PDA

View Full Version : ข้อสอบคณิต สพฐ. ม.ต้น คัดเลือกผู้แทน 2552


BooM8
15 มีนาคม 2009, 19:01
เพิ่งไปสอบมาวันนี้แหละครับ สำหรับผมยากมากๆๆเลย
ขออภัยสำหรับไฟล์ พอดีสแกนมาแล้วมันได้ไฟล์ใหญ่มากก็เลยซิปแล้วอัพขึ้นเว็บฝากไฟล์ให้น่ะครับ
ลิงค์
http://www.tempf.com/getfile.php?filekey=1237117495.78152_________2552.rar&mime=application/rar

ถ้าหากลิงค์มันเสียหรือยังไงก็บอกให้เปลี่ยนเว็บก็ได้นะครับ (ช่วยแนะนำเวบด้วย)

LightLucifer
15 มีนาคม 2009, 19:09
อาริกาโตะ จากใจเลยครับ ขอบคุณจริงๆ

Platootod
15 มีนาคม 2009, 19:50
เพิ่งไปสอบมาวันนี้แหละครับ สำหรับผมยากมากๆๆเลย
ขออภัยสำหรับไฟล์ พอดีสแกนมาแล้วมันได้ไฟล์ใหญ่มากก็เลยซิปแล้วอัพขึ้นเว็บฝากไฟล์ให้น่ะครับ
ลิงค์
http://www.tempf.com/getfile.php?filekey=1237117495.78152_________2552.rar&mime=application/rar

ถ้าหากลิงค์มันเสียหรือยังไงก็บอกให้เปลี่ยนเว็บก็ได้นะครับ (ช่วยแนะนำเวบด้วย)

ขอโทษด้วยคับผมมองไม่เห็น
นับถือมากคับ

nongtum
15 มีนาคม 2009, 19:55
#3
ผมโหลดได้ไม่มีปัญหาครับ ขอบคุณครับ

ยังไง ขอเวลาสักชั่วโมง เดี๋ยวจะอัพเป็นรูปบนเวบบอร์ดให้นะครับ

LightLucifer
15 มีนาคม 2009, 19:57
เข้าไปแล้วมันไม่มีที่ให้คลิ๊กอ่ะคับ
Download now

มีครับhttp://th.upload.sanook.com/embed/2343e4a7ee4bb46781e827fb8161d10c.JPG

Platootod
15 มีนาคม 2009, 20:01
ขอบคุณมากๆคับมองไม่เห็นพอดีผมเซ่อไปหน่อยขอโทษด้วยคับที่ทำให้เดือดร้อน
แล้วมาร่วมเฉลยกันนะคับ
รบกวนคุณ nongtum พอดีเน็ตช้ามากๆ
โหลดไฟล์ 17 mb ใช้ต้อง 2 hr 27 min

nongtum
15 มีนาคม 2009, 20:08
แนบเสร็จที่ต้นกระทู้แล้วครับ ยังไงถ้าไฟล์ภาพอันไหนมันไม่ชัด ขอให้ถามหรือแก้ไขใหม่ได้ครับ หรือไม่ก็อ้างอิงจากไฟล์ต้นฉบับเองนะครับ

BooM8
15 มีนาคม 2009, 20:21
ขอบคุณพี่ nongtum ที่มาช่วยอัพรูปใส่ให้นะครับ (พอดีทำมะเปงเหอๆ)

dektep
15 มีนาคม 2009, 20:42
1. 12
2. 3775
3. 358
4. 156
5. $\sqrt[3]{6}(\sqrt[3]{6}-1)$
6. 1540
7. 480
8. 32
9. 300
10. 810000
11. 48
12. 6
13. 13
14. 5
15. 3
16. -64
17. 29
18. $\frac{27\pi}{20}$
19. 36
20. 139
21. 18
22. 65
23. $\frac{5}{18}$
24. $\frac{4}{49}$
25. 21980
26. 111
27. 949
28. 23
29. 5
30. 1008
ใครทำแล้วช่วยเช็คด้วยนะครับ

Anonymous314
15 มีนาคม 2009, 21:03
ถูกหมดครับ รับรอง :great:

Ne[S]zA
15 มีนาคม 2009, 21:24
ข้อ29ทำไงหรอครับ แสดงวิธีทำให้หน่อยนะครับ ขอบคุณครับ

Anonymous314
15 มีนาคม 2009, 21:27
29. From $p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$
We have $p^{n+1}+q^{n+1}=5A_n-3A_{n-1}$
Therefore $A_m=p^{n+1}+q^{n+1}$. Hence $m=n+1$.
And we get $A_{m-n}=A_1=5$ ##

PS. We will prove that if $A_i=A_j$ then $i=j$
Proof From if $A_k>A_{k-1}$ then $A_{k+1}>A_k$. ($A_{k+1}=5A_k-3A_{k-1} > 5A_k-3A_k=2A_k>A_k$)
and $A_1=5,A_2=13$ Let $f(n)=A_n$. We get $f(n)$ is strictly increasing function on $\mathbb{N}$. #
$f:1-1$ Function
Therefore If $A_i=A_j$ then $i=j$.

Ne[S]zA
15 มีนาคม 2009, 21:35
เฉลยได้เร็วมาก ขอบคุณครับ

Anonymous314
15 มีนาคม 2009, 21:42
zA;51534']เฉลยได้เร็วมาก ขอบคุณครับ

พอดีวันนี้ผมว่างอะครับ

คusักคณิm
15 มีนาคม 2009, 22:24
ว่าแต่เอามาจากไหนเนี่ยพี่:D
มีของประถมไหมอ่ะ อยากได้‼

jabza
16 มีนาคม 2009, 06:30
ข้อ29พี่Anonymous เฉลย พี่ไม่ใช้p,qเป็นรากสมการ$ x^2-5x+3=0$ตามโจทย์ที่ให้มา ผมงงมากใครก็ได้ช่วยอธิบายข้อนี้ทีครับ.:please::please:

Scylla_Shadow
16 มีนาคม 2009, 07:59
ข้อ29พี่Anonymous เฉลย พี่ไม่ใช้p,qเป็นรากสมการ$ x^2-5x+3=0$ตามโจทย์ที่ให้มา ผมงงมากใครก็ได้ช่วยอธิบายข้อนี้ทีครับ.:please::please:

ตอนแรกผมก็งงอยู่ไม่น้อย

แต่พอเริ่มทำมันได้อ่ะครับ

เพราะว่า $A_0 \ = \ 2$

$A_1 \ = \ 5$

$A_2 \ = \ 19 $

เผอิญมากมาย

$A_2 \ = \ 5A_1 - 3A_0$

ตรงตามเงื่อนไขโจทย์

ได้ เอ็มคือ ๒ เอ็น คือ ๑

$A_{m-n} = A_1 = 5$

ปล. แค้นใจมากข้อ สุดท้าย ดันลืมไปว่า ๓๑๙ คือ ๑๑ คูณ ๒๙ ผิดไปเลย

ปล.๐.๒๕ ผิดไปหลายร้อยข้อด้วยเหตุผลเดียว คือทดเลขผิด

ปล.๐.๕ ข้อสี่เหลี่ยมคางหมู ดันเดาถูก ขอบคุณพระเจ้า

[SIL]
16 มีนาคม 2009, 08:15
ว่าแล้วต้องเหลือเรขา :cry:
1. 12 จำนวน
2. 3775
3. 358
4. 156
5. $\sqrt[3]{36}-\sqrt[3]{6}$
6. 1540
7. 480 $cm^3$
8. 32
9. 300 ตารางหน่วย
10. 810000 ลูกบาศก์หน่วย
11. 48 ตารางหน่วย
12. 6 เท่า
13. 13
14. 5
15. 3
16. -64
17. -
18. -
19. 36
20. 139
21. 18
22. 65 ตารางหน่วย
23. $\frac{5}{18}$
24. $\frac{4}{49}$
25. 21695
26. -
27. -
28. 23
29. 5
30. 955
ปล.
ข้อ 3 มีวิธีคิดสั้นๆป่าวคับ ของผมมันค่อนข้างยาวอ่ะครับ
ข้อ 20 สามารถบอกได้เลยหรือเปล่าว่า $p(x) = g(x) $
ทำไงถึงจะเก่งเรขาน้อ :sweat:

หยินหยาง
16 มีนาคม 2009, 18:35
;51549']ว่าแล้วต้องเหลือเรขา :cry:
ปล.
ข้อ 3 มีวิธีคิดสั้นๆป่าวคับ ของผมมันค่อนข้างยาวอ่ะครับ
ข้อ 20 สามารถบอกได้เลยหรือเปล่าว่า $p(x) = g(x) $
ทำไงถึงจะเก่งเรขาน้อ :sweat:
ข้อ 3. สั้นหรือเปล่าผมไม่รู้ แต่ใช้ความรู้ ป. 6 ทำ
ตอนแรกหา ครน.ของ 10,8,6,4 จะได้ว่าคือ 120 แต่จะให้เหลือเศษตามที่โจทย์กำหนดต้องลบ 2 ออกคือ 118 ดังนั้นจะได้จำนวนนับที่น้อยที่สุด แต่ยังไม่สอดคล้องกับโจทย์ ที่กำหนดให้ว่าหารด้วย 11 แล้วเหลือเศษ 6 สังเกตว่า 118 หารด้วย 11 เหลือ เศษ 8 ส่วน 120 หารด้วย 11 เหลือเศษ 10 ดังนั้นจำนวนนับที่น้อยที่สุดที่สอดคล้องกับโจทย์ก็จะเป็น 118+120*2 = 358 (คิดแบบสั้น) ถ้าจะคิดแบบยาวก็อธิบายแบบนี้มั้งคือให้
แสดงในรูปแบบนี้ก็ได้ คือ
จำนวนที่หารด้วย 10,8,6,4 แล้วเหลือเศษ 2 คือ 118,118+120=238, 118+120*2 =358,...+118+120*n
จำนวนข้างบนถ้าหารด้วย 11 จะเหลือเศษดังต่อไปนี้
118 หารด้วย 11 เหลือเศษ 8
238 หารด้วย 11 เหลือเศษ 7
358 หารด้วย 11 เหลือเศษ 6......****
ข้อ 20. ได้ครับ
ทำไงถึงจะเก่งเรขาน้อ :sweat:
ถ้าเป็นผมคงต้องหาเลขาสวยๆมาฝึกดูส่วนโค้งส่วนเว้ามั้งครับ เผื่อจะจินตนาการได้ว่าจะต่อเส้นไหนดี :haha::haha::haha:

dektep
16 มีนาคม 2009, 19:54
ว่าแต่เอามาจากไหนเนี่ยพี่:D
มีของประถมไหมอ่ะ อยากได้‼

ก็ทำเองสิครับ :happy:

dektep
16 มีนาคม 2009, 19:58
;51549']ว่าแล้วต้องเหลือเรขา :cry:
1. 12 จำนวน
2. 3775
3. 358
4. 156
5. $\sqrt[3]{36}-\sqrt[3]{6}$
6. 1540
7. 480 $cm^3$
8. 32
9. 300 ตารางหน่วย
10. 810000 ลูกบาศก์หน่วย
11. 48 ตารางหน่วย
12. 6 เท่า
13. 13
14. 5
15. 3
16. -64
17. -
18. -
19. 36
20. 139
21. 18
22. 65 ตารางหน่วย
23. $\frac{5}{18}$
24. $\frac{4}{49}$
25. 21695
26. -
27. -
28. 23
29. 5
30. 955
ปล.
ข้อ 3 มีวิธีคิดสั้นๆป่าวคับ ของผมมันค่อนข้างยาวอ่ะครับ
ข้อ 20 สามารถบอกได้เลยหรือเปล่าว่า $p(x) = g(x) $
ทำไงถึงจะเก่งเรขาน้อ :sweat:

ืำทำไมข้อ 25 ได้ 21695 อะครับ ผมได้ 21980

Anonymous314
16 มีนาคม 2009, 20:00
ดูเฉลยที่คุณ dektep โพสต์ไว้ในหน้า 1 รับรองชัวร์หมดครับ :haha:
ปล. ข้อ 20 สามารถคิดได้เลยครับ ให้ $r(x)=p(x)-g(x)$ พบว่า $r(x)$ เป็นพหุนามที่มีดีกรีอย่างมากคือ $3$.
และจากที่ $r(2)=r(4)=r(7)=r(-3)=0$ จะได้ว่า $r(x)$ มีรากอย่างน้อย $4$ ตัว แต่จาก $\deg(r(x))\le3$ จะได้ว่า $r(x)$ เป็นพหุนามศูนย์
นั่นคือ $p(x)=g(x)$ ทุึก ๆ $x$ ใด ๆ ##

[SIL]
16 มีนาคม 2009, 21:24
ืำทำไมข้อ 25 ได้ 21695 อะครับ ผมได้ 21980
ตอบ 21980 จริงๆ ครับ :blood: ตอบเกือบจบลืมหาร 2 กลับ :aah: :please::please:

[SIL]
16 มีนาคม 2009, 21:31
ข้อ 3. สั้นหรือเปล่าผมไม่รู้ แต่ใช้ความรู้ ป. 6 ทำ
ตอนแรกหา ครน.ของ 10,8,6,4 จะได้ว่าคือ 120 แต่จะให้เหลือเศษตามที่โจทย์กำหนดต้องลบ 2 ออกคือ 118 ดังนั้นจะได้จำนวนนับที่น้อยที่สุด แต่ยังไม่สอดคล้องกับโจทย์ ที่กำหนดให้ว่าหารด้วย 11 แล้วเหลือเศษ 6 สังเกตว่า 118 หารด้วย 11 เหลือ เศษ 8 ส่วน 120 หารด้วย 11 เหลือเศษ 10 ดังนั้นจำนวนนับที่น้อยที่สุดที่สอดคล้องกับโจทย์ก็จะเป็น 118+120*2 = 358 (คิดแบบสั้น) ถ้าจะคิดแบบยาวก็อธิบายแบบนี้มั้งคือให้
แสดงในรูปแบบนี้ก็ได้ คือ
จำนวนที่หารด้วย 10,8,6,4 แล้วเหลือเศษ 2 คือ 118,118+120=238, 118+120*2 =358,...+118+120*n
จำนวนข้างบนถ้าหารด้วย 11 จะเหลือเศษดังต่อไปนี้
118 หารด้วย 11 เหลือเศษ 8
238 หารด้วย 11 เหลือเศษ 7
358 หารด้วย 11 เหลือเศษ 6......****
ข้อ 20. ได้ครับ
ทำไงถึงจะเก่งเรขาน้อ :sweat:
ถ้าเป็นผมคงต้องหาเลขาสวยๆมาฝึกดูส่วนโค้งส่วนเว้ามั้งครับ เผื่อจะจินตนาการได้ว่าจะต่อเส้นไหนดี :haha::haha::haha:
ขอบคุณครับ :please:
ผมติดตัวแปรไปซะเยอะเลย :(
ปล. Innocent ครับ :yum:

jabza
17 มีนาคม 2009, 20:54
ข้อ26,27 ผมทำไม่ได้ ใครก็ได้ช่วยเฉลย. หรือHintหน่อยครับ:please::please::please:

Ne[S]zA
17 มีนาคม 2009, 21:23
ข้อ27) ความคิดเห็นที่22 http://www.mathcenter.net/forum/showthread.php?t=6785&page=2

jabza
18 มีนาคม 2009, 07:18
ขอขอบคุณNeSza ผมทำได้หมดทุกข้อ.แล้ว

dog_tor
18 มีนาคม 2009, 14:01
พี่ คับ ข้อ 19 ทำอย่างไรคับ อธิบายหน่อยคับ

คuรักlaข
18 มีนาคม 2009, 14:36
น่าเสียดายผมสมัครไว้แต่ไม่ได้ไปสอบเพราะผมไปซื้อ EXIMUS II ที่กรุงเทพ แล้วก็ไปเหมาหนังที่ศูนย์หนังสือจุฬา
-_- ไปแล้วเสียทรัพย์ T T หมดไปกับหนังสือหลายตังเลย เดี๋ยวขอตัวไปอ่านหนังสือก่อนนะครับ

LightLucifer
18 มีนาคม 2009, 14:49
พี่ คับ ข้อ 19 ทำอย่างไรคับ อธิบายหน่อยคับ
จากโจทย์จะได้ว่า
$\frac{910-q}{p}=m$-----------(1)
$\frac{777-q}{p}=n$-----------(2)
$m,m\in I^+และ m\not=n$
(1)-(2)
$\frac{133}{p}=m-n$
จะสรุปได้ว่า 133 หารด้วย p ลงตัว
จะได้ว่า p=1,7,19,133 แล้วนำไปแทนค่าดูว่าค่าไหนที่ทำให้ q เป็นจำนวนเฉพาะ
เมื่อทำแล้วจะได้ p=19 q=17 p+q=36

กรza_ba_yo
18 มีนาคม 2009, 19:24
ขอดูวิธีทำข้อ12 13 15 ได้รึป่าวครับ
กำลัง ง งูสองตัวเดินเข้ามาหากันอยู่อ่า

[SIL]
18 มีนาคม 2009, 19:54
ข้อ 12 ใช้การแก้สมการสองตัวแปรครับ
ข้อ 13 อาศัยเรื่องรากของพหุนามช่วยครับ
ข้อ 15 ถ้าเห็นสมการสวยๆแบบนี้ ส่วนมากจะนำมาบวกกันให้หมดครับ

ข้อ 12
http://images.hi5.com/images/1x1_trans.gif
ข้อ 13
จะได้ $p+q=5 , pq = 3 , (p-q)^2 = (p+q)^2-4pq = 13$
ข้อ 15
นำทุกสมการมารวบจะได้
$x^2+2x+1+y^2+2y+1+z^2+2z+1 = 0$
$(x+1)^2+(y+1)^2+(z+1)^2 = 0$
จะได้ $x = y = z = -1$
คำตอบคือ 3

Ne[S]zA
19 มีนาคม 2009, 12:12
ข้อ12) ลาก A ต่อออกไป ถึง K แล้วลาก B ต่อลงมาตั้งฉากกับ K ทำให่รู้ว่า พท.สามเหลี่ยมABE=พท.สามเหลี่ยมCBE (เพราะสูงเท่าและฐานเท่า)
และให้ พท.สามเหลี่ยมBOD=x และพท.สี่เหลี่ยมDOEC=y
เพราะฉะนั้น $x+y=33$..............(1)
และเพราะว่า พท.สามเหลี่ยมABD=พท.สามเหลี่ยมADC (สูงเท่าและฐานเท่า)
เพราะฉะนั้น $x+22=y+11$.........(2)
จากทั้ง2สมการได้ พท.สามเหลี่ยมBOD=11ตารางหน่วย และ พท.สามเหลี่ยมABC=66ตารางหน่วย
เพราะฉะนั้น พท.สามเหลี่ยมABCเป็น $\frac{66}{11}=6$ เท่าของพท.สามเหลี่ยมBOD

banker
19 มีนาคม 2009, 16:01
ข้อ 12

http://www.siam2.com/up/pic/154221325435602.jpg


จากสามเหลี่ยม ABC ใช้อัตราส่วนฐาน กับพื้นที่สามเหลี่ยม
x + y = 22+11 = 33
22 + x = 11 + y

แก้สมการ ได้ x =11 y = 22

พื้นที่สามเหลี่ยม ABC = 66
BOD = 11

banker
19 มีนาคม 2009, 16:21
ข้อ 11 ทำไม่เป็น ขออนุญาตใช้วิชามารช่วย

http://www.siam2.com/up/pic/638568141763112.jpg

เนื่องจากโจทย์ไม่ได้กำหนดตำแหน่งที่แน่นอนของจุด P, Q. R บอกเพียงว่า P, Q. R เป็นเส้นตรงเดียวกันและขนานกับ BC
จึงขออนุญาตใช้วิชามาร ให้ P, Q. R ทับเส้น BC ดังรูป

พื้นที่ $\bigtriangleup ABC = 24$ ตารางหน่วย
พื้นที่ $\bigtriangleup APR = 72$ ตารางหน่วย
ดังนั้นพื้นที่ $\bigtriangleup APC = 72 - 24 = 48$ ตารางหน่วย

(ได้ทดสอบดูแล้ว ไม่ว่า จุด R จะอยู่ทับจุด A หรืออยู่กึ่งกลาง เส้น AB ก็ได้ผลลัพธ์เท่ากัน )

banker
19 มีนาคม 2009, 17:18
http://www.siam2.com/up/pic/700348174280351.jpg

ตอบ 65
http://www.siam2.com/up/pic/998248983074058.jpg


ใช้หลักสลับที่การคูณ(หรือจัดหมวดหมู่การคูณใหม่)

http://www.siam2.com/up/pic/975091449132544.jpg

จากรูปข้างต้น a b c d เป็นความยาวด้านของสี่เหลี่ยมผืนผ้าเล็ก
ตัวเลขสีแดงคือพื้นที่ของสี่เหลี่ยมผืนผ้าเล็ก(ที่โจทย์กำหนดให้)

$(a \times b) \times (c\times d) = 6 \times 4 = 24 $

จัดหมวดหมู่การคูณใหม่ จะได้

$(d \times a) \times (c\times b) = 6 \times 4 = 24 $

$ (8) \times (c\times b) = 6 \times 4 = 24 $

ดังนั้น $ (c\times b) = 3 $

จะได้ช่องที่เหลือ = 3


โปรดสังเกตการคูณไขว้ของตาราง

$6 \times 4 = 8 \times ?$

จากหลัการนี้ เราก็สามารถเติมตัวเลขในช่องว่างของสี่เหลี่ยมเล็กที่เหลือได้
(AD = 13 โจทย์บอกมาหลอกให้คิดปวดหัวเล่น):D


จัดการรวมแผ่นดิน ก็จะได้พื้นที่ของสี่เหลี่ยมใหญ่ที่โจทย์ถาม
http://www.siam2.com/up/pic/998248983074058.jpg

[SIL]
19 มีนาคม 2009, 17:28
ข้อ 11 ทำไม่เป็น ขออนุญาตใช้วิชามารช่วย

http://www.siam2.com/up/pic/638568141763112.jpg

เนื่องจากโจทย์ไม่ได้กำหนดตำแหน่งที่แน่นอนของจุด P, Q. R บอกเพียงว่า P, Q. R เป็นเส้นตรงเดียวกันและขนานกับ BC
จึงขออนุญาตใช้วิชามาร ให้ P, Q. R ทับเส้น BC ดังรูป

พื้นที่ $\bigtriangleup ABC = 24$ ตารางหน่วย
พื้นที่ $\bigtriangleup APR = 72$ ตารางหน่วย
ดังนั้นพื้นที่ $\bigtriangleup APC = 72 - 24 = 48$ ตารางหน่วย

(ได้ทดสอบดูแล้ว ไม่ว่า จุด R จะอยู่ทับจุด A หรืออยู่กึ่งกลาง เส้น AB ก็ได้ผลลัพธ์เท่ากัน )
ใช้การกำหนดตัวแปรก็ได้ครับ แล้วตัวแปรจะตัดกันหมดเอง :)

banker
19 มีนาคม 2009, 17:52
;51726']ใช้การกำหนดตัวแปรก็ได้ครับ แล้วตัวแปรจะตัดกันหมดเอง :)

ผมเป็นคนเข้าใจยาก ถ้าจะกรุณา รบกวนวิธีทำด้วยครับ :please:

[SIL]
19 มีนาคม 2009, 19:08
http://www.uploadtoday.com/thumb.php?231787&A=650936 (http://www.uploadtoday.com/download/?231787&A=650936)

จากรูป $\triangle APC = \triangle APQ+\triangle PQC$ ––––––––(i)
ส่วนสูงคือ x และ 8-x ตามลำดับ แต่ฐานเท่ากันคือ 12 ครับ
แทนกลับใน (i) จะได้ $APC = \frac{1}{2}(x)(12)+\frac{1}{2}(8-x)(12) = 48$ ครับ

banker
20 มีนาคม 2009, 08:11
โอว ... ขอบคุณครับ ลืมมองในมุมนี้


ขอบคุณอีกครั้งครับ

windowz
20 มีนาคม 2009, 10:58
พี่ครับ

ผมอยากทราบวิธีการคิดข้อ 5 , 14 , 16 หน่อยครับ แถม 17 และ 18 ด้วยก็ดีครับ

ผมคิดไม่ออกอ่าครับ

แต่ข้ออื่นก็คิดได้นะครับ

ขอบคุณล่วงหน้านะครับ

LightLucifer
20 มีนาคม 2009, 11:16
ช่วยข้อ 14 ข้อเดียวก่อนนะ วันนี้ยุ่งจริงๆ
จาก $y=\sqrt{x^2+9x+30}$
จาก $x^2+9x+15=2\sqrt{x^2+9x+30}$จะได้ $y^2-15=2y$
แก้สมการได้ y=5 ค่าเดียวเพราะติดรากมีค่าเป็นลบไม่ได้

Ne[S]zA
20 มีนาคม 2009, 11:23
ข้อ16) จากโจทย์ให้ $k=lx^{\frac{4}{3}}l$
เพราะฉะนั้นได้ $k^2-13k-48=0$ แยกได้ $(k-16)(k+3)=0$
ดังนั้นได้ $k=16,-3$ แต่ $k=lx^{\frac{8}{3}}l\geqslant 0$ เพราะฉะนั้น $k=16$
$lx^{\frac{4}{3}}l=16$
$lx^{\frac{1}{3}}l=2$
$lxl=8$ ดังนั้น $x=8,-8$
ผลคูณของตำตอบคือ $-64$ :great:

LightLucifer
20 มีนาคม 2009, 12:10
ข้อ5ครับ
ก้อนแรก $$\frac{12\sqrt[3]{18}-6\sqrt[3]{12} }{6\sqrt[3]{2} }=2 \sqrt[3]{9}-\sqrt[3]{6}$$
ก้อที่สอง
$$\frac{3\sqrt[3]{12}}{\sqrt[3]{36}+\sqrt[3]{18}+\sqrt[3]{9}}= \frac{(\sqrt[3]{6}-\sqrt[3]{3})3\sqrt[3]{12}}{{(\sqrt[3]{6}}-\sqrt[3]{3})(\sqrt[3]{36}+\sqrt[3]{18}+\sqrt[3]{9})}=\frac{\sqrt[3]{12}(\sqrt[3]{6}-\sqrt[3]{3}) }{(\sqrt[3]{6}^3-\sqrt[3]{3}^3)}=\sqrt[3]{12}(\sqrt[3]{6}-\sqrt[3]{3})=2\sqrt[3]{9}-\sqrt[3]{36} $$
ก้อนแรกลบก้อนสอง
$$(2 \sqrt[3]{9}-\sqrt[3]{6})-(2\sqrt[3]{9}-\sqrt[3]{36})= \sqrt[3]{36}-\sqrt[3]{6}$$

LightLucifer
20 มีนาคม 2009, 12:32
ข้อ 18 จากรูป พื้นที่สามเหลี่ยม ABC คือ $\frac{3\sqrt{15} }{4}$--------------(i)
โดยหาจาก Heron's Formular (สูตรที่หาพื้นที่จากความยาวด้าน 3 ด้านที่ให้ $S=\frac{a+b+c}{2}$)
และพื้นที่ของ สามเหลี่ยม ABC ก็คือพื้นที่ ชอง สามเหลี่ยม COB+COA คือ
$\frac{r}{2}(2)+ \frac{r}{2}(3)$-----------------------------(ii)
เมื่อกำหนด r คือรัศมีของวงกลม O
แล้ว (i)=(ii) จะได้
$\frac{5r}{2}=\frac{3\sqrt{15} }{4}$
$r= \frac{3\sqrt{15} }{10}$
$r^2=\frac{27}{20}$
และพื้นที่วงกลม O คือ $\pi r^2=\frac{27\pi }{20} $

windowz
20 มีนาคม 2009, 12:35
ขอบคุณครับพี่

ผมคิดก้อนแรกได้

ก้อนที่สอง คิดไม่ออก

สงสัยผมทำโจทย์น้อยไปครับ

bee1236
20 มีนาคม 2009, 18:03
อยากได้เฉลยอ่ะค่ะ

ใครทำได้ช่วยลงให้หน่อยนะค่ะ

เอาทุกข้อเลย

ถ้ามีวิธีลัดก็เอามาด้วย

LightLucifer
20 มีนาคม 2009, 18:39
อยากได้เฉลยอ่ะค่ะ

ใครทำได้ช่วยลงให้หน่อยนะค่ะ

เอาทุกข้อเลย

ถ้ามีวิธีลัดก็เอามาด้วย

#9 ไงครับ(คาดว่าถูกหมด) ทำแล้วเช็คคำตอบไปก่อน ส่วนเรื่องวิธีทำงงข้อไหนเอามาถามเป็นข้อๆดีกว่า

windowz
20 มีนาคม 2009, 18:49
พี่ครับ

ข้อ 20 กับ 23 ด้วยครับ

มึนๆครับ

และสงสัยข้อ 23 ผมตีโจทย์ไม่เข้าใจครับ

ช่วยหน่อยนะครับ

^^^

LightLucifer
20 มีนาคม 2009, 20:18
พี่ครับ

ข้อ 20 กับ 23 ด้วยครับ

มึนๆครับ

และสงสัยข้อ 23 ผมตีโจทย์ไม่เข้าใจครับ

ช่วยหน่อยนะครับ

^^^

ข้อ 20 นะครับ ผมนั่งเถือก 5555555++++++ แก้สมการ 4 ตัวแปรคือ
$-5=a+b+c+d$
$55=27a+9b+3c+d$
$355=216a+36b+6c+d$
$-15=-64a+16b-4c+d$
ถ้าทำถูกจริงๆจะได้ a=1 b=4 c=1 d=-11

ข้อ 23 อ่ะครับ
จะได้แต่ละหน้าคือ 1,3,5,15,9,45
ซิมเปิ้ลสเปสคือ $6\times6$ เพราะทอย 2 รอบ
เหตุการณ์ที่สนใจมี
1-1,3-3,5-5,9-9,15-15,45-45,1-9,9-1,45-5,5-45 มีทั้งหมด 10 เหตการณ์
ดังนั้นความน่าจะเป็นคือ $\frac{10}{36}=\frac{5}{18}$

dektep
20 มีนาคม 2009, 20:28
ข้อ 20. จริงๆแล้ว $p(x)=g(x)$ ได้เลยครับ ก็กระจายมาเทียบสัมประสิทธิ์ได้ค่า $a,b,c,d$

LightLucifer
20 มีนาคม 2009, 20:37
ข้อ 20. จริงๆแล้ว $p(x)=g(x)$ ได้เลยครับ ก็กระจายมาเทียบสัมประสิทธิ์ได้ค่า $a,b,c,d$

อืมๆ ช่วยอธิบายที่คุณAnonymous314พิสูจย์เพิ่มเติมทีครับ

ดูเฉลยที่คุณ dektep โพสต์ไว้ในหน้า 1 รับรองชัวร์หมดครับ :haha:
ปล. ข้อ 20 สามารถคิดได้เลยครับ ให้ $r(x)=p(x)-g(x)$ พบว่า $r(x)$ เป็นพหุนามที่มีดีกรีอย่างมากคือ $3$.
และจากที่ $r(2)=r(4)=r(7)=r(-3)=0$ จะได้ว่า $r(x)$ มีรากอย่างน้อย $4$ ตัว แต่จาก $\deg(r(x))\le3$ จะได้ว่า $r(x)$ เป็นพหุนามศูนย์
นั่นคือ $p(x)=g(x)$ ทุึก ๆ $x$ ใด ๆ ##

คือผมงงตรง $\deg(r(x))\le3$ อ่ะ ยังเรียนไม่ถึง :sweat::cry:

windowz
20 มีนาคม 2009, 20:58
ขอข้อ 26 และ 29 ด้วยครับ

จะครบละครับ

^^^

Ne[S]zA
20 มีนาคม 2009, 21:37
ขอข้อ 26 และ 29 ด้วยครับ

จะครบละครับ

^^^
ดูหน้าแรก #12 ของคุณ Anonymous314 ครับ

dektep
20 มีนาคม 2009, 21:54
อืมๆ ช่วยอธิบายที่คุณAnonymous314พิสูจย์เพิ่มเติมทีครับ



คือผมงงตรง $\deg(r(x))\le3$ อ่ะ ยังเรียนไม่ถึง :sweat::cry:

ก็ $p(x)$ กับ $q(x)$ เป็นพหุนามดีกรีสามไงครับเอามาลบกันยังไงดีกรีก็ไม่เกินสาม

หมาป่าขาว
21 มีนาคม 2009, 09:50
ข้อ17 ที่เป็นรูปสามเหลี่ยมคิดยังไงเหรอครับ

รบกวนด้วยนะครับ:please:

windowz
21 มีนาคม 2009, 10:22
งงครับ

ข้อ 29

สงสัยยังเรียนยังไม่ถึง

กำลังจะขึ้น ม.2

กรุณาช่วยช่วยบอกรายละเอียดหน่อยครับ

ขอบคุณล่วงหน้านะครับ

LightLucifer
21 มีนาคม 2009, 10:32
ก็ $p(x)$ กับ $q(x)$ เป็นพหุนามดีกรีสามไงครับเอามาลบกันยังไงดีกรีก็ไม่เกินสาม

อ๋อ เข้าใจแล้วครับ ก็คือ มันมีอย่างน้อย 4 รา ก แต่ มันมีดีกรีสูงสุดแค่ 3 ดังนั้นจึงเป็นได้แต่ พหุนาม 0 ใช่ป่าวครับ

ราชาสมการ
21 มีนาคม 2009, 13:11
ข้อ 17 ใครทำเป็นช่วยทำให้หน่อยนะครับ ผมมีแต่สูตรลัดครับ ขอบคุณไว้ก่อนนะครับ:please:

หมาป่าขาว
21 มีนาคม 2009, 14:21
ข้อ 17 ใครทำเป็นช่วยทำให้หน่อยนะครับ ผมมีแต่สูตรลัดครับ ขอบคุณไว้ก่อนนะครับ:please:

สูตรลัดของคุณราชาสมการเป็นอย่างไรหรือครัับ

Ne[S]zA
21 มีนาคม 2009, 17:08
งงครับ

ข้อ 29

สงสัยยังเรียนยังไม่ถึง

กำลังจะขึ้น ม.2

กรุณาช่วยช่วยบอกรายละเอียดหน่อยครับ

ขอบคุณล่วงหน้านะครับ

จาก $p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$
และจากสมการได้ $p+q=5$ และ $pq=3$ เพราะฉะนั้นได้ $p^{n+1}+q^{n+1}=5A_n-3A_{n-1}$ (เพราะ $A_n=p^n+q^n$)
$\therefore A_m=5A_n-3A_{n-1}=p^{n+1}+q^{n+1}$
$\therefore A_m=p^{n+1}+q^{n+1}$ ได้ว่า $m=n+1$ ดังนั้น $m-n=1$
เพราะว่า $A_n=p^n+q^n$ ดังนั้น $A_{m-n}=p^{m-n}+q^{m-n}$
$\therefore A_1=p+q=5$ (เพราะ $p+q=5$)

ราชาสมการ
21 มีนาคม 2009, 18:14
จากที่เคยดูโจทย์ อาจต้องใช้ปีทากอลัส โดยให้ด้านสั้นสองด้าน เป็น a กับ b และให้ด้านยาวเป็น c
\therefore โจทย์ข้อนี้ก็เท่ากับ 20กำลัง2 บวกกับ 21กำลัง2 จึงเท่ากับ 29กำลัง2:blood:

ราชาสมการ
21 มีนาคม 2009, 18:24
ใครติด สพฐ บ้างครับช่วยรายงานตัวด้วยนะครับ ผมก็ติดครับ ขอแสดงความยินดีด้วยนะครับ

windowz
21 มีนาคม 2009, 18:30
ผมติดอ่าครับ

ผมไม่ต้องไปสอบ

ได้สิทธิพิเศษ

NT สูงครับ

แต่ไม่รู้ว่าไปสอบจะทำไหวไม๊

^^^

Ne[S]zA
21 มีนาคม 2009, 18:31
ผมติดครับ แต่รอบ2ตายแน่TT
ปล.ไปตั้งกระทู้ถามใหม่ดีกว่าครับ เดี๋ยวกระทู้นี้จะกลายพันธุ์

windowz
21 มีนาคม 2009, 18:40
อืมๆๆ

เชิญครับ

^^^

Platootod
21 มีนาคม 2009, 18:42
ข้อ 6
$1^2+2^2+3^2+.....20^2=2870$
$1^2+3^2+5^2+...+19^2=2(1^2+2^2+3^2+4^2+....+10^2)+660$
$2^2+4^2+6^2+8^2+..20^2=2870-1430$
$= 1440$
ป.ล. ผมอาจบวกเลขผิดแต่ $1^2+2^2+3^2+4^2+.n^2=n*(n+1)*(2n+1)/6$
ลองหาเองดูก็ได้คับ

Platootod
21 มีนาคม 2009, 18:45
ข้อ 19
$777=px+q$
$910=pz+q$
เมื่อ p q x z เป็นจำนวนเต็มบวกใดๆ
$133=p(z-x)$
$133=7*19$
ลองแทน $p = 19$ ดูคับแล้วจะตรงตามเงื่อนไขโจทย์ทุกอย่าง

windowz
21 มีนาคม 2009, 18:54
zA;51844']จาก $p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$
และจากสมการได้ $p+q=5$ และ $pq=3$ เพราะฉะนั้นได้ $p^{n+1}+q^{n+1}=5A_n-3A_{n-1}$ (เพราะ $A_n=p^n+q^n$)
$\therefore A_m=5A_n-3A_{n-1}=p^{n+1}+q^{n+1}$
$\therefore A_m=p^{n+1}+q^{n+1}$ ได้ว่า $m=n+1$ ดังนั้น $m-n=1$
เพราะว่า $A_n=p^n+q^n$ ดังนั้น $A_{m-n}=p^{m-n}+q^{m-n}$
$\therefore A_1=p+q=5$ (เพราะ $p+q=5$)

ผมงงตรงที่

$p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$อ่าครับ

ว่า $p^{n+1}+q^{n+1}$ มาได้อย่างไร

ใครจะช่วยอธิบายให้หมดก็ยิ่งเป็นพระคุณมากครับ

ผมอาจรบกวนมากหน่อยแต่ผมก็อยากรู้ว่ามันมาได้อย่างไรอ่าครับ

กรุณาช่วยหน่อยนะครับ

Platootod
21 มีนาคม 2009, 18:56
ข้อ 26 คับถ้าข้อไหนทำได้จะเฉลยให้คับ

Ne[S]zA
21 มีนาคม 2009, 19:03
ผมงงตรงที่

$p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$อ่าครับ

ว่า $p^{n+1}+q^{n+1}$ มาได้อย่างไร

ใครจะช่วยอธิบายให้หมดก็ยิ่งเป็นพระคุณมากครับ

ผมอาจรบกวนมากหน่อยแต่ผมก็อยากรู้ว่ามันมาได้อย่างไรอ่าครับ

กรุณาช่วยหน่อยนะครับ

ลองคูณกลับสิครับ :great:

Platootod
21 มีนาคม 2009, 19:08
ถ้าคุณงงลองดูวิธีง่ายๆแบบผมดูคับ
ถ้า ให้ $n =0$ เราจะได้ว่า $a_0=p^0+q^0$
ดังนั้นเราจึงได้ว่า $a_n=2$ โดยที่ $n=0$
$a_m=5(2)-3a_{n-1}$
$n-1=-1$
$a_{-1}=p^{-1}+q^{-1}$
$=p+q/pq$
$=5/3$
$a_m=5(2)-3(5/3)$
$a_m=5$
$a_{m-n}=a_{m-0}$
$=a_m$
$=5$
$ที่ให้ n=0 ลบ m มันจะได้เท่าเดิมไงคับ$

windowz
21 มีนาคม 2009, 19:12
zA;51857']ลองคูณกลับสิครับ :great:

zA;51844']จาก $p^{n+1}+q^{n+1}=(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$
และจากสมการได้ $p+q=5$ และ $pq=3$ เพราะฉะนั้นได้ $p^{n+1}+q^{n+1}=5A_n-3A_{n-1}$ (เพราะ $A_n=p^n+q^n$)
$\therefore A_m=5A_n-3A_{n-1}=p^{n+1}+q^{n+1}$
$\therefore A_m=p^{n+1}+q^{n+1}$ ได้ว่า $m=n+1$ ดังนั้น $m-n=1$
เพราะว่า $A_n=p^n+q^n$ ดังนั้น $A_{m-n}=p^{m-n}+q^{m-n}$
$\therefore A_1=p+q=5$ (เพราะ $p+q=5$)

ตอนนี้ผมอยากทราบว่า $p^{n+1}+q^{n+1}$ มาได้อย่างไรครับ

ส่วน $(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$ นี้พอจะแยกได้ครับ

^^^

Platootod
21 มีนาคม 2009, 19:13
รบกวนใครก็ได้แสดงวิธีข้อ 17 ให้ดูทีซิคับผมงงมากๆ
เรขาเนี่ยทำไม่ได้เล้ย
แล้วสุตรของคุณราชาสมการน่ะอะไรเหรอคับบอกหน่อยนะคับข้อร้อง

Ne[S]zA
21 มีนาคม 2009, 19:13
ถ้าคุณงงลองดูวิธีง่ายๆแบบผมดูคับ
ถ้า ให้ $n =0$ เราจะได้ว่า $a_0=p^0+q^0$
ดังนั้นเราจึงได้ว่า $a_n=2$ โดยที่ $n=0$
$a_m=5(2)-3a_{n-1}$
$n-1=-1$
$a_{-1}=p^{-1}+q^{-1}$
$=p+q/pq$
$=5/3$
$a_m=5(2)-3(5/3)$
$a_m=5$
$a_{m-n}=a_{m-0}$
$=a_m$
$=5$
$ที่ให้ n=0 ลบ m มันจะได้เท่าเดิมไงคับ$
เป็นวิธีที่แจ๋วมากเลย:great: ชอบ!!! ขอบคุณครับ

Platootod
21 มีนาคม 2009, 19:15
ผมไม่เข้าใจว่าคุณ windowz ต้องการทราบว่าเค้าแยกตัวประกอบได้ไงหรือต้องการทราบว่าคุณแล้วมันได้ได้ยังไง
ขอบคุณที่ชมคือผมไม่ถนัดแยกตัวประกอบบอ่ะคับ

Ne[S]zA
21 มีนาคม 2009, 19:31
ตอนนี้ผมอยากทราบว่า $p^{n+1}+q^{n+1}$ มาได้อย่างไรครับ

ส่วน $(p^n+q^n)(p+q)-(p^{n-1}+q^{n-1})(pq)$ นี้พอจะแยกได้ครับ

^^^
มาจาก $A_n=p^n+q^n$ ทำให้กลายเป็น $A_{n+1}=p^{n+1}+q^{n+1}$
เพื่อที่จะเปรียบเทียบว่า $A_m=A_{n+1}$ ครับ

LightLucifer
21 มีนาคม 2009, 19:33
รบกวนใครก็ได้แสดงวิธีข้อ 17 ให้ดูทีซิคับผมงงมากๆ
เรขาเนี่ยทำไม่ได้เล้ย
แล้วสุตรของคุณราชาสมการน่ะอะไรเหรอคับบอกหน่อยนะคับข้อร้อง

มันมีอยู่นะครับ แต่มันแบบว่า เถือกสุดๆ วิธีอื่นดีกว่า :sweat::sweat:
คือใช้ cos law หาด้านของสามเหลี่ยมแล้วใช้ Heron's formular หาโดยใช้พื้นที่เป็นตัวเชื่อมแล้วแก้สมการตัวแปรเดียว แต่มันเถือกสุดๆจริงๆครับ ผมเลิกตั้งแต่เจอ cos law แล้ว เหอๆ :sweat::sweat:

windowz
21 มีนาคม 2009, 19:33
ถ้าคุณงงลองดูวิธีง่ายๆแบบผมดูคับ
ถ้า ให้ $n =0$ เราจะได้ว่า $a_0=p^0+q^0$
ดังนั้นเราจึงได้ว่า $a_n=2$ โดยที่ $n=0$
$a_m=5(2)-3a_{n-1}$
$n-1=-1$
$a_{-1}=p^{-1}+q^{-1}$
$=p+q/pq$
$=5/3$
$a_m=5(2)-3(5/3)$
$a_m=5$
$a_{m-n}=a_{m-0}$
$=a_m$
$=5$
$ที่ให้ n=0 ลบ m มันจะได้เท่าเดิมไงคับ$

ขอบคุณมากครับ

ผมจำสับสนไปหน่อย

แต่เจ้าใจละครับ

วิธีนี้เข้าใจง่ายดีครับ

ขอบคุณมากครับ

^^^

windowz
21 มีนาคม 2009, 19:54
ผมไม่เข้าใจว่าคุณ windowz ต้องการทราบว่าเค้าแยกตัวประกอบได้ไงหรือต้องการทราบว่าคุณแล้วมันได้ได้ยังไง
ขอบคุณที่ชมคือผมไม่ถนัดแยกตัวประกอบบอ่ะคับ

ตอนนี้ผมเข้าใจแล้วครับ

ขอบคุณมากครับ

ผมได้วิธีแก้ปัญหาโจทย์แบบนี้ละครับ

Platootod
21 มีนาคม 2009, 20:02
มันมีอยู่นะครับ แต่มันแบบว่า เถือกสุดๆ วิธีอื่นดีกว่า :sweat::sweat:
คือใช้ cos law หาด้านของสามเหลี่ยมแล้วใช้ Heron's formular หาโดยใช้พื้นที่เป็นตัวเชื่อมแล้วแก้สมการตัวแปรเดียว แต่มันเถือกสุดๆจริงๆครับ ผมเลิกตั้งแต่เจอ cos law แล้ว เหอๆ :sweat::sweat:

ใช้ให้ดูหน่อยคับ
คุณ windowz ไม่รับข้อความส่วนตัวหรือคับพอดีจะส่งอะไรไปหาซักหน่อย

windowz
21 มีนาคม 2009, 20:07
เชิญครับ

ตอนนี้เปิดแล้วครับ

Platootod
21 มีนาคม 2009, 20:30
windowz has chosen not to receive private messages or may not be allowed to receive private messages. Therefore you may not send your message to him/her.
มันส่งไม่ได้อ่ะคับ
ผมเฉลยให้อีกข้อข้อ 15
นำทุกสมการมาบวกกันแล้วจัดรูปเป็นกำลังสองสมบูรณ์
หลังจากนั้นเราจะพบว่าบวกกันแล้วเท่ากับศุนย์นะคับ
ให้เราลองสมมติว่าการที่ทุกตัวบวกกันเท่ากับศูนย์มีหลายกรณีแต่ในกรณีนี้อยากให้ลองสมมติว่าทุกตัวเท่ากับศูนย์ดุคับ
เราจะได้ $x=-1, y=-1, z=-1$

windowz
21 มีนาคม 2009, 20:36
Add เมลล์มาหาผมก็ได้ครับ

ถ้าส่งไม่ได้

Jirayu_Mongkolkiattichai@hotmail.com

Scylla_Shadow
21 มีนาคม 2009, 20:37
มันมีอยู่นะครับ แต่มันแบบว่า เถือกสุดๆ วิธีอื่นดีกว่า :sweat::sweat:
คือใช้ cos law หาด้านของสามเหลี่ยมแล้วใช้ Heron's formular หาโดยใช้พื้นที่เป็นตัวเชื่อมแล้วแก้สมการตัวแปรเดียว แต่มันเถือกสุดๆจริงๆครับ ผมเลิกตั้งแต่เจอ cos law แล้ว เหอๆ :sweat::sweat:

ถึกจริงๆด้วยครับ

วิธีสบายๆนะครับ หมุนสามเหลี่ยมที่มีด้านที่เราต้องการเนี่ยไปประกอบอีกด้านหนึ่ง

แล้วดูมุม ๑๕๐ องศาที่เรามีมันจะมีส่วนที่เป็น๖๐ องศามาทับด้วย มุมที่เหลือจึงกลายเป็นมุมฉาก

จากนั้นปิทากอรัสธรรมดา

ได้สิ่งที่เราต้องการคือ ๒๙ หน่วย

Platootod
21 มีนาคม 2009, 20:40
งงอ่ะคับพี่ว่างพอไหมคับช่วยวาดรูปให้ทีสิคับข้อร้อง

windowz
21 มีนาคม 2009, 20:44
อยากรู้วิธีคิดด้วยครับ

ช่วยหน่อยครับ

เรปที่ 85

Platootod
21 มีนาคม 2009, 21:22
NT คืออะไรคับสอบวันไหนคับถ้าคะแนนสูงจะผ่านได้เหรอคับ
แล้วปีนี้มันจะสอบวันไหน

LightLucifer
21 มีนาคม 2009, 23:08
เอ่อคือ ผมมาช้าไปหน่อย เหอะๆ ป่านนี้คงนอนหมดกันแล้ว ไม่เป็นไรเดี๋ยวพรุ่งนี้ค่อยมาดูกัน อิอิ
ตือผมว่าวิธีที่ได้แรงบรรดาลใจจากคุณ Scylla_Shadow มันอ้อนค้อมเหมือนเดิม แต่ยังพอคิดออก
คือจากรูป ผมบังคับสร้างรูปสามเหลี่ยม PP'C ขึ้นมาก่อน แล้ว บังคับมุม B'P'c ให้มีขนาด 150 องศา แล้วจึงมาพิสูจน์อีกทีว่าสามเหลี่ยมที่สร้างโดยบังคับขึ้นมา $(\bigtriangleup AB'C)$ เท่ากันทุกประการกับ $\bigtriangleup ABC$ เพื่อที่จะพิสูจน์ว่า BP=AP' ซึ่งวิธีทำก็ ไปคืดกันเอาเองแล้วกัน (แป่ววววว) แต่มีครับวิธีที่จะพิสูจน์ แต่อยากให้คิดกันเอง อิอิ:haha:

หมาป่าขาว
22 มีนาคม 2009, 07:26
มันมีอยู่นะครับ แต่มันแบบว่า เถือกสุดๆ วิธีอื่นดีกว่า :sweat::sweat:
คือใช้ cos law หาด้านของสามเหลี่ยมแล้วใช้ Heron's formular หาโดยใช้พื้นที่เป็นตัวเชื่อมแล้วแก้สมการตัวแปรเดียว แต่มันเถือกสุดๆจริงๆครับ ผมเลิกตั้งแต่เจอ cos law แล้ว เหอๆ :sweat::sweat:

cos lawของคุณLightLuciferคืออะไรหรือครับไม่เคยได้ยิน ช่วยอธิบายหน่อยได้ไหมครับ เคยได้ยินแต่cosเฉยๆ
:please:

nooonut
22 มีนาคม 2009, 07:54
ข้อ 25 เมื่อเราลองสังเกตแบบรูป
เราจะได้ว่าตัวแรกของแถวที่ $n=1+(n-1)(n)/2$ เมื่อ n แทนจำนวนแถว
แล้วตัวสุดท้ายของแถวที่ $n$ เท่ากับ $[1+(n-1)(n)/2]+ n-1$ แทนจำนวนสุดท้าย
ดังนั้นผลบวกของจำนวนทุกจำนวนในแถวที่ $10=1265$
และผลบวกของจำนวนทุกจำนวนในแถวที่ $20=22155$
$A-B=20890$

jabza
22 มีนาคม 2009, 08:04
ขอแย้งข้อ25คำตอบ20890ผิดนะครับที่ถูกคือ21980 B=ผลบวกของจำนวนแรกของแถวที่1ถึงแถวที่10

nooonut
22 มีนาคม 2009, 08:07
ข้อ 22
$AB=f+d+g$
$AD=b+a+c$
$bf=6$
$af=8$
$cf=12$
$bd=6$
$ad=8$
$cd=12$
$d(a+b+c)=26$
$d(13)=26$
$d=2$
$d=f=2$
$a=4$
$b=3$
$c=6$
$ga=4$
$g(4)=4$
$g=1$
$f+d+g=5$
$5*15=65$

nooonut
22 มีนาคม 2009, 08:32
ผมบวกเลขผิดคับพอดีเมื่อคืนนอนดึกแต่วิธีผมใช้ได้ลองคิดใหม่ดู
ที่โพสต์ไปเมื่อกี้ข้อ 22 คับ
แล้วถ้าต้องการคำตอบให้ดูของคุณ dektep เพราะผมไม่ได้เรียนจินต+เบลอถ้าจะดูของผมใหดูแค่วิธีทำพอคับ

หมาป่าขาว
22 มีนาคม 2009, 08:34
มีใครช่วยเฉลยข้อ๓๐หน่อยได้ไหมครับ งงจริงๆ

nooonut
22 มีนาคม 2009, 08:38
ข้อ 30
$y^2=n^2+2552$
$y^2-n^2=2552$
$(y-n)(y+n)=2552$
$(y-n)(y+n)=2^3*11*29$
ที่เหลือคงทำเองได้แล้วใช่ไหมคับผมไม่อยากคิดมากหัวมันเบลอเดี๋ยวคำตอบผิด

หมาป่าขาว
22 มีนาคม 2009, 08:40
ขอบคุณครับ กระจ่างสุดๆ

nooonut
22 มีนาคม 2009, 08:45
ไม่รู้ว่าถูกหรือปล่าว
$n^2=2552+y^2$
$2552=(y-n)(y+n)$
$2552=2*2*2*11*29$
มี 7 สมการคือ
1.$y-n=2$
$y+n=2^2*11*29$
$y=639$
$n=637$
2.$y-n=2^2$
$y+n=2*11*29$
$y=640$
$n=636$
3.$y-n=2^3$
$y+n=11*29$
$y=323$
$n=315$
4.$y-n=2*11$
$y+n=2^2*29$
$y=69$
$n=47$
5.$y-n=2*29$
$y+n=2^2*11$
6.$y-n=11$
$y+n=2^3*29$
7.$y-n=29$
$y+n=2^3*11$
แก้ให้สี่สมการตอนนี้ง่วงแล้วจะไปนอน
จากนั้นลองแก้สมการหาค่ามันออกมาแล้วนำมาบวกกันวิธีที่เร็วกว่านี้ยังคิดไม่ออกเลย
ข้อนี้ไม่เหมือนข้อสอบสิรินธรที่ให้แยกตัวประกอบแต่ผมไปนั่งทำให้เป็นกำลังสองสมบูรณ์เศร้า
ข้อสอบ IMC กับ สพฐมันอันเดียวกันปล่าวคับ

เอาแบบเต็มๆไปเลยคับของคุณ Platootod ผมเขียนชื่อเค้าเป็นภาษาอังกฤษแล้วนะคับ

ราชาสมการ
22 มีนาคม 2009, 11:27
สูตรลัดของคุณราชาสมการเป็นอย่างไรหรือครัับ

ผม ราชาสมการให้สูตรลัดไปแล้วนะครับ

ราชาสมการ
22 มีนาคม 2009, 11:28
จากที่เคยดูโจทย์ อาจต้องใช้ปีทากอลัส โดยให้ด้านสั้นสองด้าน เป็น a กับ b และให้ด้านยาวเป็น c
\therefore โจทย์ข้อนี้ก็เท่ากับ 20กำลัง2 บวกกับ 21กำลัง2 จึงเท่ากับ 29กำลัง2:blood:

นี้ไงครับสูตรลัดครับผม

windowz
22 มีนาคม 2009, 17:29
NT คืออะไรคับสอบวันไหนคับถ้าคะแนนสูงจะผ่านได้เหรอคับ
แล้วปีนี้มันจะสอบวันไหน

ก็ตอนที่ผมอยู่ ป.6 อ่าครับ

มันจะมีีการสอบวัดผลการเรียนอ่าครับ

ทั่วประเทศอ่าครับ

แล้วผมก็เผลอสอบคณิตเต็ม 100 อ่าครับ

มันก็เป็นอย่างนี้แหละครับ

^^^

ราชาสมการ
22 มีนาคม 2009, 19:17
ใครคิดข้อ 27 ได้ช่วยบอกด้วยครับ ขอบคุณไว้ก่อนเลยครับ

Platootod
22 มีนาคม 2009, 19:44
มึคนเฉลยไว้แล้วในหน้าแรกๆ

windowz
24 มีนาคม 2009, 11:08
รบกวนขอวิธีคิดข้อ 15 กับ 20 หน่อยครับ

กรza_ba_yo
24 มีนาคม 2009, 11:21
พี่ๆครับ
คือผมอยากรู้ว่า
ข้อสอบสพฐ.อะครับ
จะถูกตัดสินไม่ตรวจข้อสอบมีกี่กรณีอ่าครับ
ขอบคุณล่วงหน้าครับ

LightLucifer
24 มีนาคม 2009, 11:26
รบกวนขอวิธีคิดข้อ 15 กับ 20 หน่อยครับ

ดูที่ ข้อ 15 #32 กับ ข้อ 20 #51 ครับ

หมาป่าขาว
24 มีนาคม 2009, 13:48
ก็ตอนที่ผมอยู่ ป.6 อ่าครับ

มันจะมีีการสอบวัดผลการเรียนอ่าครับ

ทั่วประเทศอ่าครับ

แล้วผมก็เผลอสอบคณิตเต็ม 100 อ่าครับ

มันก็เป็นอย่างนี้แหละครับ

^^^

แล้วข้อสอบNTเนี่ยประกาศผลเมื่อไหร่แล้วหาดูอย่างไรเหรอครับ?:please:

Ne[S]zA
24 มีนาคม 2009, 14:46
cos lawของคุณLightLuciferคืออะไรหรือครับไม่เคยได้ยิน ช่วยอธิบายหน่อยได้ไหมครับ เคยได้ยินแต่cosเฉยๆ
:please:
กฏของ cosine ไงครับ
$c^2=a^2+b^2-2abcos\theta $

windowz
24 มีนาคม 2009, 15:17
แล้วข้อสอบNTเนี่ยประกาศผลเมื่อไหร่แล้วหาดูอย่างไรเหรอครับ?:please:

็เขาจะส่งผลคะแนนมาทางโรงเรียนอ่าครับ

ตอนที่ผมอยู่ ป.6

ราชาสมการ
24 มีนาคม 2009, 17:22
ข้อสอบ สพฐ รอบ 2ปีนี้ จะเหมือนปีที่แล้วไหมครับ แล้วน่าจะออกแบบไหนครับ

หมาป่าขาว
25 มีนาคม 2009, 15:32
zA;52059']กฏของ cosine ไงครับ
$c^2=a^2+b^2-2abcos\theta $

็เขาจะส่งผลคะแนนมาทางโรงเรียนอ่าครับ

ตอนที่ผมอยู่ ป.6

ขอบคุณคุณNe[s]zAและึึุคุณwindowzมากๆเลยนะครับ:D

windowz
25 มีนาคม 2009, 20:48
ไม่เป็นไรครับ

Tinyo Dragonn
02 เมษายน 2009, 20:40
สงสัยคำตอบข้อที่ 30 ค่ะ
มันน่าจะได้ว่า ผลรวมของ n เป็น
637+317+47+14=1015

Platootod
02 เมษายน 2009, 20:44
1. 12
2. 3775
3. 358
4. 156
5. $\sqrt[3]{6}(\sqrt[3]{6}-1)$
6. 1540
7. 480
8. 32
9. 300
10. 810000
11. 48
12. 6
13. 13
14. 5
15. 3
16. -64
17. 29
18. $\frac{27\pi}{20}$
19. 36
20. 139
21. 18
22. 65
23. $\frac{5}{18}$
24. $\frac{4}{49}$
25. 21980
26. 111
27. 949
28. 23
29. 5
30. 1008
ใครทำแล้วช่วยเช็คด้วยนะครับ

เฉลยนี้น่าจะถูก 100% นะคับเพราะหลายคน confirm แล้วด้วย
แล้วถ้าคุณ dektep ผิดผมก็ผิดหมดทุกข้อแล้วหละคับ

Tinyo Dragonn
02 เมษายน 2009, 20:50
ข้อที่ 30 จะได้ค่า n เท่าไรบ้างคะ (ไม่แน่ใจว่ามีผิดพลาดตรงไหน)

Anonymous314
02 เมษายน 2009, 20:57
ข้อที่ 30 จะได้ค่า n เท่าไรบ้างคะ (ไม่แน่ใจว่ามีผิดพลาดตรงไหน)

ดูนี่ เจ้าค่ะ

http://www.mathcenter.net/forum/showpost.php?p=51506&postcount=24

สงสัยคำตอบข้อที่ 30 ค่ะ
มันน่าจะได้ว่า ผลรวมของ n เป็น
637+317+47+14=1015

คุณผิดพลาดตรงตัวบวกตัวสุดท้าย ที่จริงต้องเป็น 7 ไม่ใช่ 14 ขอรับ :great:

Tinyo Dragonn
02 เมษายน 2009, 21:26
ขอบคุณมากค่ะ....

ดิน น้ำ ลม ไฟ
05 เมษายน 2009, 17:09
เป็นวิธีที่เจ๋งมาก
YA-HA !!! Get แลัวๆๆๆ

อย่างเศร้าเลยไอ้ข้อสอบอันนี้อะ ติดเข้ารอบนะ แต่ว่าปีแล้วได้ที่ 1 ปีนี้โดนเด็กรร.เดียวกันแย่งที่ 1 ไป เซ็งจิตมาก

GaO
06 มิถุนายน 2009, 09:00
ตอนไปสอบยังจำได้อยู่เลย เปิดมาข้อแรก พหุนามคือไรหว่า:confused:

ทหารเขมร
21 กรกฎาคม 2009, 15:29
เฉลยด้วยครับ

คusักคณิm
25 กรกฎาคม 2009, 21:20
เฉลยด้วยครับ

ดูเฉลย ได้ที่ หน้า 1 ความเห็นที่ 9 ของ คุณ dektep ครับ :D

monster99
30 กรกฎาคม 2009, 00:20
ข้อที่1 จำนวนเต็มบวกที่หาร 2550 ลงตัว มีเท่ากับ 24 จำนวน แต่ที่เป็นพหุคูณของ 3 คิดอย่างไรครับ

banker
30 กรกฎาคม 2009, 11:18
ข้อที่1 จำนวนเต็มบวกที่หาร 2550 ลงตัว มีเท่ากับ 24 จำนวน แต่ที่เป็นพหุคูณของ 3 คิดอย่างไรครับ


มีแค่ 12 จำนวนครับ

ตัวประกอบของ 2550 = 2x3x5x5x17

จำนวนที่หาร 2550 ลงตัวคือ

3x1
3x2
3x5
3x17

3x2x5
3x2x17
3x5x5
3x5x17

3x2x5x17
3x2x5x5
3x5x5x17
3x2x25x17