Let a, b, c be non-negative numbers. Prove that

$$
\frac{a^{5}}{a^{4}+b^{4}}+\frac{b^{5}}{b^{4}+c^{4}}+\frac{c^{5}}{c^{4}+a^{4}} \geq \frac{a+b+c}{2} .
$$

Proof. Suppose, without loss of generality, that $c=\max \{a, b, c\}$. The inequality is equivalent to

$$
\left(\frac{a^{5}}{a^{4}+b^{4}}-\frac{a}{2}\right)+\left(\frac{b^{5}}{b^{4}+c^{4}}-\frac{b}{2}\right)+\left(\frac{c^{5}}{c^{4}+a^{4}}-\frac{c}{2}\right) \geq 0,
$$

or

$$
\frac{a\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}}+\frac{b\left(b^{4}-c^{4}\right)}{b^{4}+c^{4}}+\frac{c\left(c^{4}-a^{4}\right)}{c^{4}+a^{4}} \geq 0 .
$$

Since

$$
\frac{a\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}}-\frac{b\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}}=\frac{(a-b)\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}} \geq 0,
$$

it suffices to show that

$$
\frac{b\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}}+\frac{b\left(b^{4}-c^{4}\right)}{b^{4}+c^{4}}+\frac{c\left(c^{4}-a^{4}\right)}{c^{4}+a^{4}} \geq 0 .
$$

Since

$$
\frac{b\left(a^{4}-b^{4}\right)}{a^{4}+b^{4}}+\frac{b\left(b^{4}-c^{4}\right)}{b^{4}+c^{4}}=\frac{2 b^{4}\left(a^{4}-c^{4}\right)}{\left(a^{4}+b^{4}\right)\left(b^{4}+c^{4}\right)} .
$$

we derive that the last inequality is equivalent to

$$
\begin{equation*}
\left(c^{4}-a^{4}\right)(c-b)\left[a^{4}\left(2 b^{4}+b^{3} c+b^{2} c^{2}+b c^{3}+c^{4}\right)+b^{4} c\left(c^{3}-b^{3}-b^{2} c-b c^{2}\right)\right] \geq 0 . \tag{1}
\end{equation*}
$$

Since $\left(c^{4}-a^{4}\right)(c-b) \geq 0$, it is enough to show that

$$
\begin{equation*}
a^{4}\left(2 b^{4}+b^{3} c+b^{2} c^{2}+b c^{3}+c^{4}\right)+b^{4} c\left(c^{3}-b^{3}-b^{2} c-b c^{2}\right) \geq 0 . \tag{2}
\end{equation*}
$$

Let $x=\frac{b}{c}, 0<x \leq 1$. We notice that (2) is true for $b^{3}+b^{2} c+b c^{2} \leq c^{3}$, that is

$$
x^{3}+x^{2}+x \leq 1 .
$$

In addition, (2) is true for $a c \geq b^{2}$. To prove this fact, it suffices to prove (2) for $a=\frac{b^{2}}{c}$, that is

$$
2 x^{8}+x^{7}+x^{6}+x^{5}+x^{4}-x^{3}-x^{2}-x+1 \geq 0 .
$$

Case $0<x \leq \frac{\sqrt{5}-1}{2}$. We have

$$
2 x^{8}+x^{7}+x^{6}+x^{5}+x^{4}-x^{3}-x^{2}-x+1>x^{5}+x^{4}-x^{3}-x^{2}-x+1=\left(1-x-x^{2}\right)\left(1-x^{3}\right) \geq 0
$$

Case $\frac{\sqrt{5}-1}{2}<x \leq 1$. Since $x^{8} \geq x^{9}$, it suffices to show that

$$
x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}-x^{3}-x^{2}-x+1 \geq 0
$$

This inequality is equivalent to

$$
\frac{x^{2}}{x^{2}+x+1} \geq x^{3}-x^{6}-x^{9} .
$$

Since

$$
27\left(x^{3}-x^{6}-x^{9}\right)=5-\left(3 x^{3}-1\right)^{2}\left(3 x^{3}+5\right) \leq 5,
$$

it suffices to show that

$$
\frac{x^{2}}{x^{2}+x+1} \geq \frac{5}{27} .
$$

This inequality reduces to $x \geq \frac{5+\sqrt{465}}{44}$, and it is true because $x>\frac{\sqrt{5}-1}{2}>\frac{27}{44}>\frac{5+\sqrt{465}}{44}$.
Based on obtained results, from here on we will assume that $x^{3}+x^{2}+x>1$ and $b^{2}>a c$. The last condition implies $b>a$, therefore $0 \leq a<b \leq c$. By permutation, from (1) we find that the given cyclic inequality is also valid under the condition

$$
\begin{equation*}
\left(a^{4}-b^{4}\right)(a-c)\left[b^{4}\left(2 c^{4}+c^{3} a+c^{2} a^{2}+c a^{3}+a^{4}\right)+c^{4} a\left(a^{3}-c^{3}-c^{2} a-c a^{2}\right)\right] \geq 0 . \tag{3}
\end{equation*}
$$

Since $\left(a^{4}-b^{4}\right)(a-c)>0$, it is enough to show that

$$
b^{4}\left(2 c^{4}+c^{3} a+c^{2} a^{2}+c a^{3}+a^{4}\right)+c^{4} a\left(a^{3}-c^{3}-c^{2} a-c a^{2}\right) \geq 0 .
$$

Since $b^{2}>a c$, it suffices to prove this inequality for $b^{2}=a c$, that is

$$
x^{5}+x^{4}+2 x^{3}+x-1 \geq 0
$$

Indeed, we have

$$
x^{5}+x^{4}+2 x^{3}+x-1=\left(x^{2}+1\right)\left(x^{3}+x^{2}+x-1\right)>0,
$$

and this completes the proof. Equality occurs only if $a=b=c$.

