TMO 16th Problems and Solutions Pitchayut Saengrungkongka

May 21, 2019

On May 18-22, 2019, the 16th Thailand Mathematical Olympiad (TMO) was held in Silpakorn University. Here I complied all the problems and the solutions from the TMO. The exam translations provided in this document are not official.

Corrections and comments are welcome!

Contents

Problems 2
Day 1 Problems 2
Day 2 Problems 3
1 Day 1 Solutions 4
1.1 Solution to Problem 1 4
1.2 Solution to Problem 2 5
1.3 Solution to Problem 3 6
1.4 Solution to Problem 4 7
1.5 Solution to Problem 5 9
2 Day 2 Solutions 10
2.1 Solution to Problem 6 10
2.2 Solution to Problem 7 11
2.3 Solution to Problem 8 12
2.4 Solution to Problem 9 13
2.5 Solution to Problem 10 14

Language : English
Day: 1

Sunday, May 19th, 2019
Problem 1. Let $A B C D E$ be a convex pentagon such that $\angle A E B=\angle B D C=90^{\circ}$ and line $A C$ bisect both angles $\angle B A E$ and $\angle D C B$. Let the circumcircle of $\triangle A B E$ meet the line $A C$ again at point P.
(i) Prove that P is the circumcenter of $\triangle B D E$.
(ii) Prove that points A, C, D, E lie on a circle.

Problem 2. Let a, b be two different positive integers. Suppose that a, b are relatively prime. Prove that $\frac{2 a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}$ is not an integer.

Problem 3. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f\left(x+y f(x)+y^{2}\right)=f(x)+2 y$ for every $x, y \in \mathbb{R}^{+}$.

Problem 4. A rabbit initially stands at the position 0 , and repeatedly jumps on the real line. In each jump, the rabbit can jump to any position corresponds to an integer but it cannot stand still. Let $N(a)$ be the number of ways to jump with a total distance of 2019 and stop at the position a. Determine all integers a such that $N(a)$ is odd.

Problem 5. Let a, b, c be positive reals such that $a b c=1$. Prove the inequality

$$
\frac{4 a-1}{(2 b+1)^{2}}+\frac{4 b-1}{(2 c+1)^{2}}+\frac{4 c-1}{(2 a+1)^{2}} \geqslant 1
$$

Language : English
Day: 2

Monday, May 20th, 2019
Problem 6. Determine all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $x f(y)+y f(x) \leqslant x y$ for all $x, y \in \mathbb{R}$.

Problem 7. Let $A=\{-2562,-2561, \ldots, 2561,2562\}$. Prove that for any bijection (1-1, onto function) $f: A \rightarrow A$,

$$
\sum_{k=1}^{2562}|f(k)-f(-k)| \text { is maximized if and only if } f(k) f(-k)<0 \text { for any } k=1,2, \ldots, 2562
$$

Problem 8. Let $A B C$ be a triangle such that $A B \neq A C$ and ω be its circumcircle. Let I be the center of the incircle of $\triangle A B C$ which touches $B C$ at D. The circle with diameter $A I$ intersects ω again at K. Line $A I$ meets ω again at M. Prove that points K, D, M are colinear.

Problem 9. A chaisri figure is a triangle which the three vertices are vertices of a regular 2019-gon. Two different chaisri figure may be formed by different regular 2019-gon.

A thubkaew figure is a convex polygon which can be dissected into multiple chaisri figure where each vertex of a dissected chaisri figure does not necessarily lie on the border of the convex polygon.

Determine the maximum number of vertices that a thubkaew figure may have.

Problem 10. Prove that there are infinitely many positive odd integer n such that $n!+1$ is composite number.

§1 Day 1 Solutions

§1.1 Solution to Problem 1

Problem 1. Let $A B C D E$ be a convex pentagon such that $\angle A E B=\angle B D C=90^{\circ}$ and line $A C$ bisect both angles $\angle B A E$ and $\angle D C B$. Let the circumcircle of $\triangle A B E$ meet the line $A C$ again at point P.
(i) Prove that P is the circumcenter of $\triangle B D E$.
(ii) Prove that points A, C, D, E lie on a circle.

Clearly P is the projection from B to $A C$ thus quadrilaterals $A B P E$ and $C B P D$ are cyclic. This implies that $P B=P D=P E$, completing (i).

For (ii), we just observe that

$$
\angle C A E+\angle C D E=\angle P B E+\left(90^{\circ}+\angle B D E\right)=180^{\circ} .
$$

§1.2 Solution to Problem 2

Problem 2. Let a, b be two different positive integers. Suppose that a, b are relatively prime. Prove that $\frac{2 a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}$ is not an integer.

The main claim is

Claim (Gcd bash)

We have $\operatorname{gcd}\left(a^{2}-b^{2}, a\left(a^{2}+b^{2}\right)\right) \mid 2$.

Proof. Let $d \mid a^{2}-b^{2}$ and $d \mid a\left(a^{2}+b^{2}\right)$. We get

$$
\begin{aligned}
d \mid a\left(a^{2}+b^{2}\right)+a\left(a^{2}-b^{2}\right) & \Longrightarrow d \mid 2 a b^{2} \\
d \mid 2 a\left(a^{2}+b^{2}\right) & \Longrightarrow d \mid 2 a^{3} \\
d\left|a^{2}-b^{2}\right| 2\left(a^{4}-b^{4}\right) & \Longrightarrow d \mid 2 b^{4}
\end{aligned}
$$

thus $d \mid 2 \operatorname{gcd}(a, b)^{4}=2$ so we are done.
By the claim, we get $a^{2}-b^{2} \mid 4$ which is a clear contradiction.

§1.3 Solution to Problem 3

Problem 3. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f\left(x+y f(x)+y^{2}\right)=f(x)+2 y$ for every $x, y \in \mathbb{R}^{+}$.

The answer is $f(x)=2 \sqrt{x+c}$ for any constant $c \geqslant 0$. It's straightforward to verify that they are all work.

Now we present several solutions which show that these are all possible solutions.
Solution 1 (Substitution, Pitchayut): Plug in $(x, y)=\left(a, \frac{\sqrt{f(a)^{2}+4 b}-f(a)}{2}\right)$ gives

$$
f(a+b)=\sqrt{f(a)^{2}+4 b} \Longrightarrow f(a+b)^{2}=f(a)^{2}+4 b
$$

This is enough to conclude that $f(x)^{2}=4 x+c$ for some constant c. This implies the set of solutions mentioned above.

Solution 2 (Squaring, Nithid): Squaring the entire equation gives

$$
f\left(x+y f(x)+y^{2}\right)^{2}=f(x)^{2}+4\left(y f(x)+y^{2}\right) .
$$

By Intermediate Value Theorem, function $g(y):=y f(x)+y^{2}$ is surjective on \mathbb{R}^{+}as $\lim _{y \rightarrow 0} g(y)=$ 0 and $\lim _{y \rightarrow \infty} g(y)=\infty$. Thus we get

$$
f(x+t)^{2}=f(x)^{2}+4 t
$$

for any $x, t \in \mathbb{R}^{+}$. This is enough to conclude the solution.
Solution 3 (Injectivity): First, we prove that f is injective. Suppose that $f(x+t)=f(x)$ for some $x, t \in \mathbb{R}^{+}$. Arguing as in above solutions, we can choose appropriate y such that $y f(x)+y^{2}=t$. Using this choice of x, y in the equation gives $y=0 \Longrightarrow t=0$ which is contradiction.

Now it's easy to finish. Plug in $y=\frac{f(t)}{2}$ gives

$$
f\left(x+\frac{f(x) f(t)}{2}+\frac{f(t)^{2}}{4}\right)=f(x)+f(t)=f\left(t+\frac{f(x) f(t)}{2}+\frac{f(x)^{2}}{4}\right) .
$$

By injectivity, $4 x+f(t)^{2}=4 t+f(x)^{2}$ so we are done.

§1.4 Solution to Problem 4

Problem 4. A rabbit initially stands at the position 0 , and repeatedly jumps on the real line. In each jump, the rabbit can jump to any position corresponds to an integer but it cannot stand still. Let $N(a)$ be the number of ways to jump with a total distance of 2019 and stop at the position a. Determine all integers a such that $N(a)$ is odd.

Solution 1 (Generating Function, Pitchayut): Consider the quantity

$$
T=\left(x+x^{2}+x^{3}+\ldots\right)+\left(y+y^{2}+y^{3}+\ldots\right)=\frac{x}{1-x}+\frac{y}{1-y}
$$

and define generating functions

$$
F(x, y)=1+T+T^{2}+\ldots
$$

It's clear that the coefficient of $x^{a} y^{b}$ in F equals to the number of ways to jump with a total distance of $a+b$ and arrive at position $a-b$. (i.e. variable x corresponds to positive jumps and variable y corresponds to negative jumps).

Now we evaluate $F(x, y)$ in $(\bmod 2)$. To do this, let $G(x, y)=1-T+T^{2}-T^{3}+\ldots$ so that $G \equiv F(\bmod 2)$ and

$$
G(x, y)=\frac{1}{1+T}=\frac{1}{1+\frac{x}{1-x}+\frac{y}{1-y}}=\frac{(1-x)(1-y)}{1-x y}
$$

Thus, we have

$$
G(x, y)=(1-x-y+x y)\left(1+(x y)+(x y)^{2}+(x y)^{3}+\ldots\right)
$$

It's clear that all odd coefficients are in form $x^{n} y^{n+1}$ and $x^{n+1} y^{n}$, which corresponds to $N(1)$ and $N(-1)$. Thus the answer is $\{1,-1\}$.
Solution 2 (Combinatorial, Official): Encode each positive jump by the corresponding number of + and encode each negative jump by the corresponding number of - . We also seperate each jump by I. For instance,

Clearly, in $N(a)$, we must have $\frac{2019+a}{2}+$'s and $\frac{2019-a}{2}-$'s. We also note that a \mid must be inserted between +-.

Now, fix a sequence consisting many + and - . Call a sequence bad if and only if there are odd number of ways to insert \mid.

Claim

The only bad sequences are +-+-+. . . + and $-+-+-\ldots$.

Proof. If m, n denote the number of consecutive ++ and -- respectively. Then clearly the number of ways to insert \mid is precisely 2^{m+n}. Thus the sequence is bad if and only if there are no ++ and -- at all so we are done.

The two bad sequences correspond to $N(1)$ and $N(-1)$ thus the answer is $\{1,-1\}$.

$\S 1.5$ Solution to Problem 5

Problem 5. Let a, b, c be positive reals such that $a b c=1$. Prove the inequality

$$
\frac{4 a-1}{(2 b+1)^{2}}+\frac{4 b-1}{(2 c+1)^{2}}+\frac{4 c-1}{(2 a+1)^{2}} \geqslant 1 .
$$

Add one to each term and divide by 4. This is equivalent to

$$
\sum_{\mathrm{cyc}} \frac{b^{2}+b+a}{(2 b+1)^{2}} \geqslant 1
$$

Now we can use Cauchy Schwarz in form $\left(b^{2}+b+a\right)\left(1+b+\frac{1}{a}\right) \geqslant(b+b+1)^{2}$. Thus it suffices to prove that

$$
\sum_{\mathrm{cyc}} \frac{1}{b+\frac{1}{a}+1} \geqslant 1
$$

In fact, it turns out to be an equality. The cleanest way to verify that is to substitute $a=\frac{x}{y}, b=\frac{z}{x}, c=\frac{y}{z}$ and see that each term is equal to $\frac{x}{x+y+z}$.

§2 Day 2 Solutions

§2.1 Solution to Problem 6

Problem 6. Determine all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $x f(y)+y f(x) \leqslant x y$ for all $x, y \in \mathbb{R}$.

The answer is $f(x)=\frac{x}{2}$ which clearly works.
Define $g(x)=f(x)-\frac{x}{2}$. Then the given equation is equivalent to $x g(y)+y g(x) \leqslant 0$. We aim to show that $g \equiv 0$.

Plugging in $x=y$ gives $x g(x) \leqslant 0$. Thus plugging in $y=-x$ gives

$$
x g(-x)+\underbrace{(-x g(x))}_{\geqslant 0} \leqslant 0 \Longrightarrow x g(-x) \leqslant 0
$$

Replacing x by $-x$ gives $x g(x) \geqslant 0$ for any $x \in \mathbb{R}$. This is enough to conclude that $g(x)=0$ for any $x \neq 0$.

Seeking $g(0)$, we just drop $x=0$ and we are done.

§2.2 Solution to Problem 7

Problem 7. Let $A=\{-2562,-2561, \ldots, 2561,2562\}$. Prove that for any bijection (1-1, onto function) $f: A \rightarrow A$,

$$
\sum_{k=1}^{2562}|f(k)-f(-k)| \text { is maximized if and only if } f(k) f(-k)<0 \text { for any } k=1,2, \ldots, 2562 .
$$

Clearly we can swap $f(k)$ and $f(-k)$ without any trouble. Thus WLOG $f(k)>f(-k)$ for any $k=1,2, \ldots, 2562$. The expression evaluates to

$$
f(1)+f(2)+\ldots+f(2562)-f(-1)-f(-2)-\ldots-f(-2562) .
$$

Evidently it's minimized when $\{f(1), f(2), \ldots, f(2562\}=\{1,2, \ldots, 2562\}$ and $\{f(-1), f(-2), \ldots, f(-2562)\}=\{-1,-2, \ldots,-2562\}$ which is basically the problem's condition.

§2.3 Solution to Problem 8

Problem 8. Let $A B C$ be a triangle such that $A B \neq A C$ and ω be its circumcircle. Let I be the center of the incircle of $\triangle A B C$ which touches $B C$ at D. The circle with diameter $A I$ intersects ω again at K. Line $A I$ meets ω again at M. Prove that points K, D, M are colinear.

Solution 1 (Spiral Similarity): Let the incircle touches $A C, A B$ at E, F. Then just notice the spiral similarity $\triangle K B F \stackrel{\perp}{\sim} \triangle K C E$ thus

$$
\frac{K B}{K C}=\frac{B F}{C E}=\frac{B D}{D C}
$$

or $K D$ bisects $\angle B K C$. This immediately implies K, D, M are colinear.
Solution 2 (Inversion): Again, let E, F be the other two intouch points. Perform inversion around the incircle. We deduce the following facts.

- $\triangle A^{\prime} B^{\prime} C^{\prime}$ is medial triangle of $\triangle D^{\prime} E^{\prime} F^{\prime}$.
- I is orthocenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$.
- M^{\prime} is reflection of I across $B^{\prime} C^{\prime}$.
- K^{\prime} is foot from D^{\prime} to $E^{\prime} F^{\prime}$.

This means points $\left\{K^{\prime}, D^{\prime}\right\}$ and $\left\{I, M^{\prime}\right\}$ are symmetric across $B^{\prime} C^{\prime}$. So $K^{\prime} D^{\prime} M^{\prime} I$ is isosceles trapezoid which obviously cyclic. Inverting back, we find that K, D, M are colinear.

§2.4 Solution to Problem 9

Problem 9. A chaisri figure is a triangle which the three vertices are vertices of a regular 2019-gon. Two different chaisri figure may be formed by different regular 2019-gon.

A thubkaew figure is a convex polygon which can be dissected into multiple chaisri figure where each vertex of a dissected chaisri figure does not necessarily lie on the border of the convex polygon.

Determine the maximum number of vertices that a thubkaew figure may have.

The answer is 4038 .
To see the bound, note that each angle must be multiple of $\frac{\pi}{2019}$. Thus each angle has magnitude at most $\frac{2018 \pi}{2019}$. Thus if the n-gon works, then

$$
\pi(n-2) \leqslant \frac{2018 \pi}{2019} \cdot n \Longrightarrow n \leqslant 4038
$$

For the construction, take a regular 4038-gon and draw a line connecting the center to each of the 4038 vertices.

§2.5 Solution to Problem 10

Problem 10. Prove that there are infinitely many positive odd integer n such that $n!+1$ is composite number.

For each odd n, either n or $n!-n$ works. To see why, let $n!+1=p$ be a prime. Then by a variant of Wilson's Theorem,

$$
n!(p-1-n)!\equiv(-1)^{n-1} \quad(\bmod p) \Longrightarrow(n!-n)!=(p-1-n)!\equiv-1 \quad(\bmod p)
$$

thus $p \mid(n!-n)!+1$ so $n!-n$ works.

