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Polynomial Root Motion

Christopher Frayer and James A. Swenson

Abstract. A polynomial is determined by its roots and its leading coefficient. If you set the
roots in motion, the critical points will move too. Using only tools from the undergraduate
curriculum, we find an inverse square law that determines the velocities of the critical points
in terms of the positions and velocities of the roots. As corollaries we get the Polynomial Root
Dragging Theorem and the Polynomial Root Squeezing Theorem.

1. INTRODUCTION. Given a polynomial p(x), all of whose roots are real, Rolle’s
theorem implies that p(x) has exactly one critical point between each pair of adjacent
roots. If we move (“drag”) some of the roots, the critical points will also change. The
Polynomial Root Dragging Theorem (our Corollary 3; see [1], [4]) explains the change
qualitatively: moving one or more roots of the polynomial to the right will cause every
critical point to move to the right or stay fixed. Moreover, no critical point moves as
far as the root that is moved the farthest.

In this note we consider a more dynamic problem, which we call “polynomial root
motion.” Rather than forcing all the roots to move in the same direction [1], or requir-
ing two roots to be squeezed together (our Corollary 4; see [2]), we consider the more
general case where each root is allowed to move linearly in a fixed direction. That is,
we introduce a time parameter t , let ri = ai + vi t for some constant (possibly zero)
velocities vi , and study

pt(x) =
n∏

i=1

(x − ri ).

The basic question is: at time t0, which way is a specified critical point moving?
Our Theorem 2, in addition to answering the basic question of polynomial root

motion, shows that the roots affect critical points almost like gravity affects masses.
Specifically, the influence of a particular root on the velocity of a given critical point
varies jointly with the root’s velocity and the inverse square of the distance separating
the root from the critical point. As corollaries, we obtain independent proofs of the
Polynomial Root Dragging Theorem and the Polynomial Root Squeezing Theorem.
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2. POLYNOMIAL ROOT MOTION. Let pt(x) be a monic polynomial of degree
n ≥ 2, with real, moving roots ri = ai + vi t for 1 ≤ i ≤ n, and critical points c1(t) ≤
c2(t) ≤ · · · ≤ cn−1(t). That is,

pt(x) =
n∏

i=1

(x − ri ) =
n∑

k=0

(−1)kσk xn−k .

Here the coefficient σk is defined as

σk(r1, . . . , rn) =
∑

A⊆{1,... ,n}, |A|=k

(∏
i∈A

ri

)
,

which is the kth elementary symmetric function on {ri | 1 ≤ i ≤ n} (see [3, p. 607]).
Conventionally, we define σ0 ≡ 1 and σ−1 ≡ 0.

For future use, we discuss ∂σk
∂r j

. Observe that σk contains
(n

k

)
terms, each of which

is a product of k distinct factors ri . Of these
(n

k

)
terms,

(n−1
k−1

)
contain r j . The partial

derivative of each of these terms with respect to r j is obtained simply by deleting
the r j . The other terms of σk are constant with respect to r j ; it follows that ∂σk

∂r j
=

σk−1(r1, . . . , r j−1, r j+1, . . . , rn). For convenience, we introduce the notation σ
ĵ

k =
σk(r1, . . . , r j−1, r j+1, . . . , rn), so ∂σk

∂r j
= σ

ĵ

k−1.
We’re now ready to begin work on the basic question. Notice first that the equation

p′
t (x) = 0 implicitly defines a critical point as a function x = ci (t). For (x, t) in a

neighborhood where p′′
t (x) 	= 0, ci (t) is continuously differentiable by the implicit

function theorem (see [5, Theorem 9.28]).
Let’s understand in detail what happens when p′

t0
(x) = p′′

t0
(x) = 0. In this case,

since pt0 has n real roots, x is a root of pt0 with multiplicity at least three. We’ll call
this a “triple root collision”—it means that at least two of the n − 1 critical points of
pt0 “collide” at x . At triple root collisions, ci(t) is still continuous as it is squeezed
between roots that are colliding, and continuity follows from the Squeeze Theorem.

In the lemma that follows, we study an arbitrary critical point of pt (x). Note that
σk , σ ı̂

k , and ck depend implicitly on t .

Lemma 1. If c(t) is a differentiable function on (a, b) such that c(t) is a critical point
of pt(x) for all t ∈ (a, b), then

dc

dt
=

∑n−2
k=0

[(
(−1)k(n − k − 1)cn−k−2

)∑n
i=1 viσ

ı̂
k

]
∑n−2

k=0(−1)k(n − k)(n − k − 1)cn−k−2σk

wherever this expression is defined.

Proof. We have pt (x) = ∑n
k=0(−1)kσk xn−k , so c is a critical point of pt(x) when

0 = p′
t (c) =

n−1∑
k=0

(−1)kσk(n − k)cn−k−1.

(We have taken advantage of the usual convention that c0 ≡ 1, even when c = 0.)
Differentiating with respect to t yields

0 =
n−1∑
k=0

[
(−1)kσk(n − k)(n − k − 1)cn−k−2 dc

dt
+ (−1)k dσk

dt
(n − k)cn−k−1

]
. (1)
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By the chain rule

dσk

dt
=

n∑
i=1

∂σk

∂ri

dri

dt
=

n∑
i=1

σ ı̂
k−1vi ,

and (1) becomes

dc

dt
=

∑n−1
k=0(−1)k+1

∑n
i=1 σ ı̂

k−1vi (n − k)cn−k−1∑n−1
k=0(−1)kσk(n − k)(n − k − 1)cn−k−2

,

where we have hypothesized that the denominator is nonzero. In the numerator, the
k = 0 term vanishes, because σ ı̂

−1 = ∂

∂ri
(1) = 0, and in the denominator, the k = n − 1

term vanishes, because n − k − 1 = 0. Reindexing in the numerator, we obtain

dc

dt
=

∑n−2
k=0

[(
(−1)k(n − k − 1)cn−k−2

)∑n
i=1 viσ

ı̂
k

]
∑n−2

k=0(−1)k(n − k)(n − k − 1)cn−k−2σk

,

as desired.

We pause to analyze a few special cases. First, we analyze the n = 2 case, to verify
that Lemma 1 is plausible. Here, σn−2 = σ

ĵ

n−2 = 1 for j ∈ {1, 2}, so we have c′(t) =
(v1 + v2)/2, as we should expect.

Let’s also consider the case where all vi are equal—say vi = v for all i . In this case,
the entire graph is being translated to the right with velocity v. Note that each term
of σk contains k different factors. Each term is omitted from σ ı̂

k for exactly k distinct
values of i , and thus appears (n − k) times in

∑n
i=1 viσ

ı̂
k . It follows that

dc

dt
=

∑n−2
k=0

[(
(−1)k(n − k − 1)cn−k−2

)∑n
i=1 viσ

ı̂
k

]
∑n−2

k=0(−1)k(n − k)(n − k − 1)cn−k−2σk

=
∑n−2

k=0

[(
(−1)k(n − k − 1)cn−k−2

)
v(n − k)σk

]
∑n−2

k=0(−1)k(n − k)(n − k − 1)cn−k−2σk

= v,

(2)

as desired.
We now use Lemma 1 to show that the roots affect critical points almost like gravity

affects masses: the influence of a particular root on the velocity of a given critical point
varies jointly with the root’s velocity and the inverse square of the distance separating
the root from the critical point.

Theorem 2 (Polynomial Root Motion Theorem). Suppose that c(t) is a critical
point of pt (x) for all t , with c differentiable, c(t0) = 0, and p′′

t0
(0) 	= 0. If pt0(x)

has a double root at x = 0 (say, rk = rk(t0) = 0 if and only if k ∈ {i, j}), then
c′(t0) = (vi + v j )/2. Otherwise,

c′(t0) = −pt0(0)

p′′
t0
(0)

n∑
i=1

vi

r 2
i

.

Proof. The σk , at t = t0, are the coefficients of pt0 , up to sign. Hence, by Taylor’s
theorem, σn = (−1)n pt0(0), σn−1 = (−1)n+1 p′

t0
(0) = 0, and 2σn−2 = (−1)n p′′

t0
(0).
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Since σn−2 	= 0, setting c = 0 in Lemma 1 gives

c′(t0) =
n∑

i=1

σ ı̂
n−2

2σn−2
vi .

First, suppose that x = 0 is a root of pt0 . Since pt0 has n real roots, and 0 is a critical
point, 0 must be a multiple root. Since p′′

t0
(0) 	= 0, 0 is a root of multiplicity two, so

assume that rk = 0 if and only if k ∈ {i, j}. Then σn−2 = ∏
k /∈{i, j } rk , and so

σ k̂
n−2 =

{
σn−2 k ∈ {i, j},
0 k /∈ {i, j},

which yields

c′(t0) = σn−2

2σn−2
vi + σn−2

2σn−2
v j = vi + v j

2
.

Now consider the case where x = 0 is not a root of pt0 . Observe that, for each j ,
σ ı̂

j = σ j − riσ
ı̂
j−1. Inductively, we obtain

σ ı̂
n−2 =

n−2∑
k=0

(−1)n−kσkr n−2−k
i .

It follows that

0 = (−1)n pt0(ri) =
n∑

k=0

(−1)n−kσkr n−k
i = σn − riσn−1 + r 2

i σ ı̂
n−2.

Solving for σ ı̂
n−2, we can rewrite

c′(t0) =
n∑

i=1

σ ı̂
n−2

2σn−2
vi =

n∑
i=1

riσn−1 − σn

r 2
i · 2σn−2

vi .

Using Taylor’s formula, as above, we have

c′(t0) =
n∑

i=1

riσn−1 − σn

r 2
i · 2σn−2

vi =
n∑

i=1

−ri p′
t0
(0) − pt0(0)

r 2
i p′′

t0
(0)

vi = −pt0(0)

p′′
t0
(0)

n∑
i=1

vi

r 2
i

as desired.

While Theorem 2 has a noticeably simpler statement than Lemma 1, it provides a
complete answer to the basic question of polynomial root motion! After all, pt (x) can
always be translated horizontally to place the critical point of interest at x = 0 when
t = t0, and then Theorem 2 lets us determine which way that critical point is moving
at t = t0.

We can read Theorem 2 as representing the velocity of a critical point at a given
time as a certain weighted average of the vi .1 This suggests that we can use Theorem
2 to give an independent proof of the Polynomial Root Dragging Theorem.

1The sum of the weights equals one, as it should; we see this by substituting 1 for v in (2).
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Corollary 3 (Polynomial Root Dragging Theorem, [1]). Let p(x) be a degree-n
polynomial with n real roots. When we drag a subset of the roots to the right, its
critical points either stay fixed or move to the right.

Proof. It’s enough to prove the theorem for a single critical point, in the case when
exactly one root (say, r1) is moved d units to the right. Define pt (x) by taking p0(x) =
p(x), v1 = d > 0, and vi = 0 for all i 	= 1. Choose a critical point, and let its position
at time t be given by ci (t). There are only finitely many times when r1 collides with
another root. Since ci is continuous, it will suffice to show that ci is nondecreasing on
each open interval between these times. Consider such an interval. Since r1 is a single
root throughout this interval, ci 	= r1 in this interval. If ci coincides with some other
root, then there are distinct j, k 	= 1 such that ci = r j = rk at some time during the
interval. But r j and rk are not moving, so ci = r j = rk throughout the interval, and
therefore ci is constant on the interval.

Now suppose that ci does not coincide with any root at any time in the interval, and
let t0 be a fixed time in the interval. Translating in x as necessary, we may assume that
ci (t0) = 0. Theorem 2 gives

c′
i (t0) = −pt0(0)

p′′
t0
(0)r 2

1

d.

Since 0 is a critical point and pt0(0) 	= 0 is a local extremum, pt0(0)/p′′
t0
(0) < 0 by

the second derivative test, and again c′
i (t0) > 0, as desired. Hence ci (0) ≤ ci (1), and

ci will move to the right or stay fixed.

Corollary 4 (Polynomial Root Squeezing Theorem, [2]). Let p(x) be a polynomial
of degree n with (possibly repeated) real roots r1, r2, . . . , rn, and select ri < r j . If ri

and r j move equal distances toward each other, without passing other roots, then each
critical point will stay fixed or move toward (ri + r j )/2.

Proof. Fix d > 0, the distance which ri and r j will move. Define pt (x) by taking
p0(x) = p(x), vi = d, v j = −d, and vk = 0 for all k 	∈ {i, j}. Fix t0 ∈ (0, 1), choose
a critical point, and let its position at time t be given by ck(t).

We have assumed that ri and r j do not pass other roots. Thus, if ck(t0) is at a multiple
root, it must be a stationary multiple root; hence ck is constant. Otherwise, we translate
in x to move ck(t0) to x = 0. Applying Theorem 2, we have

c′
k(t0) = −d · pt0(0)

p′′
t0
(0)

(
1

r 2
i

− 1

r 2
j

)
.

As we saw in the proof of Corollary 3, −d · pt0(0)/p′′
t0
(0) > 0. Hence c′

k(t0) > 0 if and
only if |ri | < |r j |. That is, at time t0, ck is moving in the same direction as the nearer
of {ri , r j }, and is therefore moving toward the more distant of {ri , r j}. This implies the
desired conclusion, no matter where ck(t0) is located relative to {ri , r j }.
3. CONCLUSION. We find it particularly satisfying that these results on polynomial
root motion can be proved using standard topics from the undergraduate curriculum,
such as implicit differentiation, the second derivative test, and Taylor’s theorem. It
would be nice to prove an analogue of Corollaries 3 and 4 in the case where different
subsets of the roots are moved in opposing directions. If ci (t) is a critical point of pt (x)

for all t , then in principle we can integrate c′
i (t) to find the net change in the critical
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point. Unfortunately, for this purpose, Lemma 1 does not provide a usable expression
for c′

i (t). Nor can we apply the simpler Theorem 2, which is valid only for a single
value t = t0.

An interesting exercise is to completely characterize the n = 3 case, where

y = pt (x) = A
3∏

i=1

(x − ri (t)).

It is not hard to explain what happens when roots collide, or to show that a critical
point can change directions at most once. When two roots collide, Theorem 2 implies
that the critical point between the two roots will move away from the collision in the
direction of the fastest moving root. We can describe the triple root collision qualita-
tively, despite the fact that Theorem 2 does not apply in this case. Indeed, r1, r2, r3,
and c are all odd functions of t . The fact that a critical point changes direction at most
once, which follows as dc

dt is monotonic when n = 3, was a complete surprise to us: we
thought that it would be possible to find velocities and initial positions of the roots that
would send fast-moving roots shooting past the critical point at different times, from
opposite directions, producing at least two changes in direction. What can one say in
the degree-n case?
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From Enmity to Amity

Aviezri S. Fraenkel

Abstract. Sloane’s influential On-Line Encyclopedia of Integer Sequences is an indispensable
research tool in the service of the mathematical community. The sequence A001611 listing the
“Fibonacci numbers + 1” contains a very large number of references and links. The sequence
A000071 for the “Fibonacci numbers −1” contains an even larger number. Strangely, resent-
ment seems to prevail between the two sequences; they do not acknowledge each other’s exis-
tence, though both stem from the Fibonacci numbers. Using an elegant result of Kimberling,
we prove a theorem that links the two sequences amicably. We relate the theorem to a result
about iterations of the floor function, which introduces a new game.
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