Mathcenter Forum

Mathcenter Forum (https://www.mathcenter.net/forum/index.php)
-   คณิตศาสตร์อุดมศึกษา (https://www.mathcenter.net/forum/forumdisplay.php?f=2)
-   -   Bernoulli number (https://www.mathcenter.net/forum/showthread.php?t=6209)

Soopreecha 01 มกราคม 2009 13:03

Bernoulli number
 
กำหนดให้
$$\frac{x}{e^x-1}=
1-\frac{x}{2}+\frac{B_1x^2}{2!}-\frac{B_2x^4}{4!}+\frac{B_3x^6}{6!}-...$$


พิสูจน์
$$ 1^p+2^p+3^p+...+n^p=
\frac{n^{p+1}}{p+1}+\frac{n^p}{2}+\frac{B_1pn^{p-1}}{2!}-\frac{B_2p(p-1)(p-2)n^{p-3}}{4!}+...$$
ทำยังไงครับ

Anton 28 กรกฎาคม 2020 02:22

อ้างอิง:

Problem. Let $B_1,B_2,B_3,\ldots$ be the real numbers such that $$\frac{x}{\mathrm{e}^x-1}=1-\frac{x}{2}+\frac{B_1}{2!}\,x^2-\frac{B_2}{4!}\,x^4+\frac{B_3}{6!}\,x^6-\ldots\,.$$ Show that $$1^p+2^p+3^p+\ldots+n^p=\frac{n^{p+1}}{p+1}+\frac{n^p}{2}+\frac{B_1}{2!}\,p\,n^{p-1}-\frac{B_2}{4!}\,p(p-1)(p-2)\,n^{p-3}+\ldots\,.$$
Let $S^p_n$ denote the sum $1^p+2^p+3^p+\ldots+n^p$ for each positive integer $n$ and for each nonnegative integer $p$. Observe that
$$f_n(x):=\sum_{p=0}^\infty\,\frac{S^p_n}{p!}\,x^p=\sum_{p=0}^\infty\,\sum_{k=0}^n\,\frac{k^p}{p!}\,x^p=\sum_{k=1}^n\,\sum_{p=0} ^\infty\,\frac{(kx)^p}{p!}\,.$$
Therefore,
$$f_n(x)=\sum_{k=1}^n\,\exp(kx)=\frac{\big(\exp(nx)-1\big)\,\exp(x)}{\exp(x)-1}\,.$$
Consequently,
$$f_n(x)=\left(\frac{\exp(nx)-1}{x}\right)\,\left(\frac{x}{\exp(x)-1}\right)\,\exp(x)\,.$$
Now, we have
$$\exp(x)=\sum_{k=0}^\infty\,\frac{1}{k!}\,x^k\,,$$
$$\frac{\exp(nx)-1}{x}=\sum_{r=0}^\infty\,\frac{n^{r+1}}{(r+1)!}\,x^r\,,$$
and
$$\frac{x}{\exp(x)-1}=-\frac{x}{2}-\sum_{s=0}^\infty\,\frac{(-1)^s}{(2s)!}\,B_{s}\,x^{2s}\,,$$
where $B_0,B_1,B_2,\ldots$ are the Bernoulli numbers (with $B_0:=-1$). Thus, the coefficient of $x^p$ in $f_n(x)$ is given by the sum
$$s_n^p:=-\frac{1}{2}\,\sum_{r=0}^{p-1}\,\frac{n^{r+1}}{(r+1)!\,(p-1-r)!}+\sum_{\substack{r,s\geq 0\\ r+2s\leq p}}\,\frac{(-1)^s\,B_{s}\,n^{r+1}}{(r+1)!\,(2s)!\,(p-r-2s)!}\,.$$
That is,
$$\begin{align}S_n^p&=p!\,s_n^p\\&=\sum_{\ell=0}^{p+1}\,\frac{p!}{(p-\ell+1)!}\,n^{p+1-\ell}\,\left(-\sum_{s=0}^{\left\lfloor \frac{\ell}{2}\right\rfloor}\,\frac{(-1)^s\,B_s}{(2s)!\,(\ell-2s)!}-\frac{1}{2\,(\ell-1)!}\right)\,.\tag{$\star$}\end{align}$$
We need to verify that
$$-\sum_{s=0}^{\left\lfloor \frac{\ell}{2}\right\rfloor}\,(-1)^s\,\binom{\ell}{2s}\,B_s-\frac{\ell}{2}=\begin{cases}0&\text{if }\ell\geq 3\text{ is odd}\,,\\
-(-1)^{\frac{\ell}{2}}\,B_{\frac{\ell}{2}}&\text{if }\ell\geq 2\text{ is even}\,.
\end{cases}\tag{*}$$
For convenience, write
$$b_s:=\begin{cases}
-(-1)^{\frac{s}{2}}B_{\frac{s}{2}}&\text{if }s\geq 0\text{ is even}\,,\\
-\dfrac{1}{2}&\text{if }s=1\,,\\
0&\text{if }s\geq 3\text{ is odd}\,.
\end{cases}$$
That is, $\dfrac{x}{\exp(x)-1}=\sum\limits_{s=0}^\infty\,\dfrac{b_s}{s!}\,x^s$. Hence, (*) is equivalent to
$$\sum_{s=0}^\ell\,\binom{\ell}{s}\,b_s=b_\ell\text{ for }\ell=2,3,4,\ldots\,.\tag{#}$$

We shall now prove (#). From $\dfrac{x}{\exp(x)-1}=\sum\limits_{s=0}^\infty\,\dfrac{b_s}{s!}\,x^s$, we get
$$x=\big(\exp(x)-1\big)\sum\limits_{s=0}^{\infty}\,\dfrac{b_s}{s!}\,x^s=\left(\sum_{r=1}^{\infty}\,\frac{x^r}{r!}\right)\,\left(\sum\limits_{s=0} ^{\infty}\,\dfrac{b_s}{s!}\,x^s\right)\,.$$
This yields
$$x=\sum_{\ell=0}^\infty\,\frac{x^\ell}{\ell!}\,\sum_{s=0}^{\ell-1}\,\binom{\ell}{s}\,b_s\,.$$
This shows that
$$\sum_{s=0}^{\ell-1}\,\binom{\ell}{s}\,b_s=0\text{ for }\ell=2,3,4,\ldots\,.$$
This is equivalent to (#).

Therefore, using ($\star$), we see that $S_n^0=n$ and for an integer $p\geq 1$, we have
$$S_n^p=\frac{n^{p+1}}{p+1}+\frac{n^p}{2}-\sum_{\ell=1}^{\left\lfloor\frac{p}{2}\right\rfloor}\,\frac{(-1)^\ell\,p(p-1)(p-2)\cdots (p-2\ell+2)}{(2\ell)!}\,B_\ell\,n^{p+1-2\ell}\,.$$
Thus, the claim is established. Here are some examples:
$$S_n^1=\frac{n^2}{2}+\frac{n}{2}=\frac{n(n+1)}{2}\,,$$
$$S_n^2=\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6}=\frac{n(n+1)(2n+1)}{6}\,,$$
$$S_n^3=\frac{n^4}{4}+\frac{n^2}{2}+\frac{n}{4}=\left(\frac{n(n+1)}{2}\right)^2\,,$$
$$S_n^4=\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}\,,$$
and
$$S_n^5=\frac{n^6}{6}+\frac{n^5}{2}+\frac{5n^4}{12}-\frac{n^2}{12}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

share 20 กุมภาพันธ์ 2021 16:33

Bernoulli numbers Bn are a sequence of rational numbers which occur frequently in number theory.

The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent
and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers,
in the Euler-Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

Wiki

kongp 29 พฤษภาคม 2021 10:58

https://www.youtube.com/watch?v=U8_HF6RuBO8

Creative Song for everybody


เวลาที่แสดงทั้งหมด เป็นเวลาที่ประเทศไทย (GMT +7) ขณะนี้เป็นเวลา 07:07

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha