Mathcenter Forum

Mathcenter Forum (https://www.mathcenter.net/forum/index.php)
-   »Ñ­ËÒ¤³ÔµÈÒʵÃì Á.»ÅÒ (https://www.mathcenter.net/forum/forumdisplay.php?f=3)
-   -   ͹ءÃÁ(ÍÕ¡áÅéÇÍèÒ¤ÃѺ T_T) (https://www.mathcenter.net/forum/showthread.php?t=14166)

Kira Yamato 27 ÁԶعÒ¹ 2011 13:40

͹ءÃÁ(ÍÕ¡áÅéÇÍèÒ¤ÃѺ T_T)
 
1.¨§ËҼźǡ n ¾¨¹ìáá¢Í§ $1\bullet (2+3)+2\bullet(3+4)+3\bullet(4+5)+5\bullet(6+7)+...$
(¼ÁäÁèá¹èã¨ÇèÒ⨷ÂìÁѹ¼Ô´ËÃ×Íà»ÅèÒÍèÒ¤ÃѺ ¾¨¹ì·Õè4 Áѹá»Å¡æ àÅÂäÁèÃÙé¨Ð¤Ô´Âѧä§ÍèÒ¤ÃѺ)
2.¹ÓºÍŷç¡ÅÁÁҨѴàÃÕ§à»ç¹ªÑé¹æà»ç¹ÃÙ»¾ÔÃÐÁÔ´°Ò¹ÊÕèàËÅÕèÂÁ¨ÑµØÃÑÊ â´ÂáµèÅЪÑé¹àÃÕ§à»ç¹ÊÕèàËÅÕèÂÁ¨ÑµØÃÑÊ«é͹¡Ñ¹
¶éÒªÑé¹°Ò¹ÅèÒ§ÊØ´ ÁÕÅÙ¡ºÍ¡´éÒ¹ÅÐ20ÅÙ¡ áÅЪÑ鹺¹ÊØ´ ÁÕÅÙ¡ºÍÅ 1 ÅÙ¡ ¨§ËҨӹǹÅÙ¡ºÍÅ·Ñé§ËÁ´ã¹¡Í§¹Õé
3.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $ 1^2+(1^2+2^2)+(1^2+2^2+3^2)+...$
4.¨§ËÒ¤èҢͧ $(\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...)^5 $
5.ãËé $Sn=1^3+2^3+3^3+...+n^3$ ¨§ËÒ¤èҢͧ $\frac{1}{\sqrt{S1}}+\frac{1}{\sqrt{S2}} +\frac{1}{\sqrt{S3}}+...+\frac{1}{\sqrt{Sn}}$
6.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $\frac{3}{1\bullet4}+\frac{5}{4\bullet9}+\frac{7}{9\bullet16}+...+\frac{2n+1}{n^2(n+1)^2}+...$
7.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2^n}+...$

banker 27 ÁԶعÒ¹ 2011 15:28

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
2.¹ÓºÍŷç¡ÅÁÁҨѴàÃÕ§à»ç¹ªÑé¹æà»ç¹ÃÙ»¾ÔÃÐÁÔ´°Ò¹ÊÕèàËÅÕèÂÁ¨ÑµØÃÑÊ â´ÂáµèÅЪÑé¹àÃÕ§à»ç¹ÊÕèàËÅÕèÂÁ¨ÑµØÃÑÊ«é͹¡Ñ¹
¶éÒªÑé¹°Ò¹ÅèÒ§ÊØ´ ÁÕÅÙ¡ºÍ¡´éÒ¹ÅÐ20ÅÙ¡ áÅЪÑ鹺¹ÊØ´ ÁÕÅÙ¡ºÍÅ 1 ÅÙ¡ ¨§ËҨӹǹÅÙ¡ºÍÅ·Ñé§ËÁ´ã¹¡Í§¹Õé

$1^2 +2 ^2 +3^2 +...+ 20 ^2 = \frac{1}{6} (n)(n+1)(2 n+1) = \frac{1}{6} (20)(20+1)(2 \cdot 20 +1) = 2870$

banker 27 ÁԶعÒ¹ 2011 15:57

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
4.¨§ËÒ¤èҢͧ $(\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...)^5 $

$\because \ \ \ 1+2+3+...+n = \frac{n(n+1)}{2}$

$ \frac{1}{1+2+3+...+n} = \frac{2}{n(n+1)} = 2 (\frac{1}{n(n+1)}) = 2 (\frac{1}{n} - \frac{1}{n+1})$

$(\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...\frac{1}{1+2+3+4+...n}) = 2(1- \frac{1}{n+1}) = 2(\frac{n}{n+1})$

$(\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...\frac{1}{1+2+3+4+...n})^5 = 2^5(1- \frac{1}{n+1})^5 = 32(\frac{n}{n+1})^5$

banker 27 ÁԶعÒ¹ 2011 16:30

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
6.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $\frac{3}{1\bullet4}+\frac{5}{4\bullet9}+\frac{7}{9\bullet16}+...+\frac{2n+1}{n^2(n+1)^2}+...$

$\because \frac{3}{1\bullet4} = \frac{1}{1} - \frac{1}{2^2}$

$\because \frac{5}{4\bullet9} = \frac{1}{2^2} - \frac{1}{3^2}$
.
.
.
$\because \frac{2n+1}{ n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}$

ºÇ¡ææææ¡Ñ¹Å§ÁÒ ¨ÐµÑ´æææææ¡Ñ¹ àËÅ×Í

$1 - \frac{1}{(n+1)^2} \ $ ËÃ×Í $\frac{n(n+2)}{(n+1)^2}$

Kira Yamato 27 ÁԶعÒ¹ 2011 16:58

¢Íº¤Ø³ÁÒ¡¤ÃѺ :)

¡ÔµµÔ 27 ÁԶعÒ¹ 2011 17:01

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
7.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$

⨷Âì¹èÒ¨Ðà»ç¹
$\frac{3}{2}+\frac{5}{4}+\frac{7}{6}+...+\frac{2n+1}{2n}+...$
ËÃ×ÍÇèÒ¨Ãԧ澨¹ì·Õè$n$ ã¹$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$.....¨Ðà»ç¹$\dfrac{2n+1}{2^n}$

¼ÁÇèÒÅاBanker¡ÓÅѧ·Ó¢éÍ7...ÍÂÙèá¹èàÅÂ

¼Áá»Å§ $\frac{2n+1}{2n}=1+\frac{1}{2n}$
¨Ðä´é͹ءÃÁ¨Ò¡$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$ à»ç¹
$1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+...+1+\frac{1}{2n}+...$
$=n+\left(\,\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2n}\right) $
¼ÁËÒ¼ÅÃÇÁ¢Í§$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2n}$...ÂѧäÁèÍÍ¡

¶éÒà»ç¹$a_n=\dfrac{2n+1}{2^n}$
$S=\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2^n}$........(1)

$\frac{1}{2} S=\frac{3}{4}+\frac{5}{8}+\frac{7}{16}+...+\frac{2n+1}{2^{n+1}}$........(2)

(1)-(2);$\frac{1}{2} S=\frac{3}{2}-\frac{2n+1}{2^{n+1}}+\left(\,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^{n-1}}\right) $

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^{n-1}}=1-\frac{1}{2^{n-1}}$

$\frac{1}{2} S=\frac{3}{2}-\frac{2n+1}{2^{n+1}}+\left(\,1-\frac{1}{2^{n-1}}\right) $

$S=5-\left(\,\frac{2n+1}{2^n}+\frac{1}{2^{n-2}}\right) $

$S=5-\frac{1}{2^n}\left(\,2n+5\right) $

banker 27 ÁԶعÒ¹ 2011 17:07

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
7.¨§ËҼźǡ n ¾¨¹ìáá¢Í§Í¹Ø¡ÃÁ $\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$


⨷Âì¹èÒ¨Ðà»ç¹
$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{\color{red}{2^n}}+...$


áµè¡çÂѧä»äÁè¶Ù¡ :haha:

Kira Yamato 27 ÁԶعÒ¹ 2011 17:13

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ ¡ÔµµÔ (¢éͤÇÒÁ·Õè 119556)
⨷Âì¹èÒ¨Ðà»ç¹
$\frac{3}{2}+\frac{5}{4}+\frac{7}{6}+...+\frac{2n+1}{2n}+...$
ËÃ×ÍÇèÒ¨Ãԧ澨¹ì·Õè$n$ ã¹$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$.....¨Ðà»ç¹$\dfrac{2n+1}{2^n}$
:

àÍèÍ ¢Íâ·É¤ÃѺ ¾¨¹ì·Õèn à»ç¹ $\frac{2n+1}{2^n}$ áËÅФÃѺ ¢Íº¤Ø³ÁÒ¡¤ÃѺ :haha:

banker 27 ÁԶعÒ¹ 2011 17:17

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ ¡ÔµµÔ (¢éͤÇÒÁ·Õè 119556)
⨷Âì¹èÒ¨Ðà»ç¹
$\frac{3}{2}+\frac{5}{4}+\frac{7}{6}+...+\frac{2n+1}{2n}+...$
ËÃ×ÍÇèÒ¨Ãԧ澨¹ì·Õè$n$ ã¹$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$.....¨Ðà»ç¹$\dfrac{2n+1}{2^n}$

¼ÁÇèÒÅاBanker¡ÓÅѧ·Ó¢éÍ7...ÍÂÙèá¹èàÅÂ

¼Áá»Å§ $\frac{2n+1}{2n}=1+\frac{1}{2n}$
¨Ðä´é͹ءÃÁ¨Ò¡$\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2n}+...$ à»ç¹
$1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+...+1+\frac{1}{2n}+...$
$=n+\left(\,\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2n}\right) $
¼ÁËÒ¼ÅÃÇÁ¢Í§$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2n}$...ÂѧäÁèÍÍ¡

¶éÒà»ç¹$a_n=\dfrac{2n+1}{2^n}$
$S=\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+...+\frac{2n+1}{2^n}$........(1)

$\frac{1}{2} S=\frac{3}{4}+\frac{5}{8}+\frac{7}{16}+...+\frac{2n+1}{2^{n+1}}$........(2)

(1)-(2);$\frac{1}{2} S=\frac{3}{2}-\frac{2n+1}{2^{n+1}}+\left(\,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^{n-1}}\right) $

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^{n-1}}=1-\frac{1}{2^{n-1}}$

$\frac{1}{2} S=\frac{3}{2}-\frac{2n+1}{2^{n+1}}+\left(\,1-\frac{1}{2^{n-1}}\right) $

$S=5-\left(\,\frac{2n+1}{2^n}+\frac{1}{2^{n-2}}\right) $

$S=5-\frac{1}{2^n}\left(\,2n+5\right) $


¤Ø³¡ÔµµÔà´Ò㨶١ :haha:


¢éÍ 1 ¡Ñº ¢éÍ 5 à´ÕëÂǤ׹¹ÕéÁÒ·ÓãËé¤ÃѺ

ÍéÍ ... Êͧ¢é͹Õé ⨷Âì¼Ô´´éÇ ¨¢¡·. ªèÇÂá¡é´éǤÃѺ

Amankris 27 ÁԶعÒ¹ 2011 19:28

¢éÍ 1
¶éÒÁÑè¹ã¨ÇèÒ¶Ù¡ ¡çÍÒ¨¨Ðà»ç¹ Fibonacci number ¡çä´é¤ÃѺ

banker 27 ÁԶعÒ¹ 2011 23:23

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
1.¨§ËҼźǡ n ¾¨¹ìáá¢Í§ $1\bullet (2+3)+2\bullet(3+4)+3\bullet(4+5)+5\bullet(6+7)+...$
(¼ÁäÁèá¹èã¨ÇèÒ⨷ÂìÁѹ¼Ô´ËÃ×Íà»ÅèÒÍèÒ¤ÃѺ ¾¨¹ì·Õè4 Áѹá»Å¡æ àÅÂäÁèÃÙé¨Ð¤Ô´Âѧä§ÍèÒ¤ÃѺ)

ÊÁÁصÔÇèÒ⨷Âìà»ç¹áºº¹Õé
1.¨§ËҼźǡ n ¾¨¹ìáá¢Í§ $1\bullet (2+3)+2\bullet(3+4)+3\bullet(4+5) $$+4\bullet(5+6)$$+5\bullet(6+7)+...$

¨Ðä´é $a_n $
$= n[(n+1)+(n+2)]$

$ = n[(n+1)+(n+1)+1]$

$= n[2(n+1)+1]$

$ = 2n(n+1) +n$

$ = 2[\color{blue}{n(n+1)}] +n$

áµè $1\bullet2 + 2\bullet3 + 3\bullet4 + ... + n\bullet(n+1) = \frac{n(n+1)(n+2)}{3} $

$\therefore \ \ S_n =2[\frac{n(n+1)(n+2)}{3}] +n^2 = \frac{2}{3}n(n+1)(n+2) +n^2$


ÁÒ¤Ô´ãËÁè ä´éÍÕ¡Êٵà $S_n = n(n+1)(\frac{4n+11}{6})$


Çѹ¹ÕéªÑ¡ÁÖ¹áÅéÇ ¾ÃØ觹ÕéÁÒ·ÓµèͤÃѺ




9:49 28/6/2554

àªéÒ¹ÕéÁÒµèͤÃѺ ¡àÅÔ¡¢éͤÇÒÁ¢éÒ§µé¹ àÍÒãËÁè¤ÃѺ

$1\bullet (2+3)+2\bullet(3+4)+3\bullet(4+5) $$+4\bullet(5+6)$$+5\bullet(6+7)+...$

$ = (1\bullet2 + 1 \bullet3) + (2 \bullet 3 + 2 \bullet 4) + (3 \bullet 4 + 3 \bullet 5) + (4\bullet 5 + 4 \bullet6) + ...$

$ = (1\bullet2 + 2 \bullet 3 + 3 \bullet 4 + 4\bullet 5 + ... + n(n+1)) + (1 \bullet3 + 2 \bullet 4 +3 \bullet 5 +4 \bullet6 + ... ) $

$ = \dfrac{n(n+1)(n+2)}{3} + (1 \bullet3 + 2 \bullet 4 +3 \bullet 5 +4 \bullet6 + ... +n(n+2)) $

$ = \dfrac{n(n+1)(n+2)}{3} + (1 \bullet3 )+ (2 \bullet 4) + (3 \bullet 5) + (4 \bullet6) + ... +n(n+2) $


$ = \dfrac{n(n+1)(n+2)}{3} + (1 \bullet(1+2) )+ (2 \bullet (2+2)) + (3 \bullet (3+2)) + (4 \bullet (4+2)) + ... +n(n+2) $

$ = \dfrac{n(n+1)(n+2)}{3} + (1^2 +1\bullet2) )+ (2^2 + (2\bullet2)) + (3^2 + (3\bullet2)) + (4^2 +(4\bullet2)) + ... +n^2+n\bullet2) $

$ = \dfrac{n(n+1)(n+2)}{3} + (1^2 +1\bullet2) )+ (2^2 + (2\bullet2)) + (3^2 + (3\bullet2) ) + (4^2 +(4\bullet2)) + ... +n^2+n\bullet2) $


$ = \dfrac{n(n+1)(n+2)}{3} + (1^2+2^2+3^2+4^2+...+n^2) + 2(1+2+3+4+...+n)$

$ = \dfrac{n(n+1)(n+2)}{3} + (\frac{n}{6}(n+1)(2n+1)) + 2(\frac{n(n+1)}{2})$

$ = n(n+1) [(\frac{(n+2}{3}) +(\frac{(2n+1}{6}) +1]$

$ S_n = n(n+1)\frac{4n+11}{6}$

Final àÊÕÂ·Õ :haha:

banker 28 ÁԶعÒ¹ 2011 10:39

ÍéÒ§ÍÔ§:

¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Kira Yamato (¢éͤÇÒÁ·Õè 119549)
5.ãËé $Sn=1^3+2^3+3^3+...+n^3$ ¨§ËÒ¤èҢͧ $\frac{1}{\sqrt{S1}}+\frac{1}{\sqrt{S2}} +\frac{3}{\sqrt{S3}}+...+\frac{n}{\sqrt{Sn}}$

$Sn=1^3+2^3+3^3+...+n^3 = [\frac{n(n+1)}{2}]^2$

$\sqrt{Sn} = \frac{n(n+1)}{2} $

$ \frac{1}{\sqrt{Sn} } = \frac{1 }{\frac{n(n+1)}{2}}$

$ \frac{n}{\sqrt{Sn} } = \frac{2n }{n(n+1)} = \frac{2}{n+1} = 2n(\frac{1}{n} - \frac{1}{n+1})$

¶éÒà»ç¹ $\frac{1}{\sqrt{S1}}+\frac{1}{\sqrt{S2}} +\frac{1}{\sqrt{S3}}+...+\frac{1}{\sqrt{Sn}}$

¨Ðä´é ¼ÅÃÇÁà·èҡѺ $2(1- \frac{1}{n+1})$





¶éÒ⨷Âìà»ç¹ ¨§ËÒ¤èҢͧ $\frac{1}{\sqrt{S1}}+\frac{2}{\sqrt{S2}} +\frac{3}{\sqrt{S3}}+...+\frac{n}{\sqrt{Sn}}$

$ \frac{n}{\sqrt{Sn} } = \frac{2n }{n(n+1)} = \frac{2}{n+1}$

$ \frac{1}{\sqrt{S1} } = \frac{2}{1+1} = \frac{1}{1}$

$ \frac{2}{\sqrt{S2} } = \frac{2}{2+1} = \frac{2}{3}$

$ \frac{3}{\sqrt{S3} } = \frac{2}{3+1} = \frac{2}{4}$

$ \frac{4}{\sqrt{S4} } = \frac{2}{4+1} = \frac{2}{5}$
.
.
$ \frac{n}{\sqrt{Sn} } = \frac{2}{n+1} $

¼ÅÃÇÁ¢Í§ $\frac{1}{\sqrt{S1}}+\frac{2}{\sqrt{S2}} +\frac{3}{\sqrt{S3}}+...+\frac{n}{\sqrt{Sn}}$

$ = 1+2(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} +...+ \frac{1}{n+1})$


仵èÍÂѧä§ËÇèÒ ? :D

lek2554 28 ÁԶعÒ¹ 2011 20:49

1 ä¿ÅìáÅÐàÍ¡ÊÒÃ
¢éÍ 5 ⨷Âì¨ÃÔ§à»ç¹áºº¹Õé¤ÃѺ
Attachment 5887

Keehlzver 23 ¡Ã¡®Ò¤Á 2011 20:19

¢éÍ 3 ¾ÔÁ¾ì¼Ô´ãªèäËÁ¤ÃѺ àÅ¢ªÕé¡ÓÅѧ¾¨¹ì $3^3$ µéͧà»ç¹ $3^2$ ¶éÒãªè¼Á¢ÍµÍºáºº¢éÒ§ÅèÒ§¤ÃѺ :great:

$1^2+(1^2+2^2)+(1^2+2^2+3^2)+...+(1^2+2^2+...+n^2)=\frac{n(n+1)^2(2n+1)}{6}-(\frac{n(n+1)}{2})^2$

Kira Yamato 23 ¡Ã¡®Ò¤Á 2011 21:59

¤ÃѺ ¢Íâ·É¤ÃѺ :(


àÇÅÒ·ÕèáÊ´§·Ñé§ËÁ´ à»ç¹àÇÅÒ·Õè»ÃÐà·Èä·Â (GMT +7) ¢³Ð¹Õéà»ç¹àÇÅÒ 10:06

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha