ดูหนึ่งข้อความ
  #29  
Old 12 พฤศจิกายน 2016, 04:03
Aquila Aquila ไม่อยู่ในระบบ
บัณฑิตฟ้า
 
วันที่สมัครสมาชิก: 29 ตุลาคม 2013
ข้อความ: 412
Aquila is on a distinguished road
Default

อ้างอิง:
ข้อความเดิมเขียนโดยคุณ tngngoapm View Post
เพื่อไม่ให้เกิดความสับสนในการใช้ภาษา ผมจะขอสรุปผลเฉลยของสมการ $x^{3}+y^{3}=z^{3}$ โดยใช้สัญลักษณ์ทางเซตดังนี้นะครับ.....
กำหนดให้....
$$A=\left\{\,(x,y,z)\in R^{+}\times R^{+}\times I^{+}\mid x^{3}+y^{3}=z^{3}\right\} $$
$$B=\left\{\,(x,y,z)\in I^{+}\times I^{+}\times I^{+}\mid x^{3}+y^{3}=z^{3}\right\} $$
จากเซต $A$และ$B$ ข้างต้นจะได้ว่า $B\subset A$
แต่จากการหาผลเฉลยของเซตคำตอบของ $A$ โดยใช้เวลาอยู่พอสมควรแล้ว
ผมสรุปเซตคำตอบของ $A$ ได้ทั้งหมด $4 ชุดคำตอบ$แล้วครับ (มันยังมีอีก.........)
$$ชุดที่1....(x,y,z)=((9+\sqrt{5} )s,(9-\sqrt{5})s,12s)....เมื่อ 12s\in I^{+}$$
$$ชุดที่2....(x,y,z)=((12+\sqrt{33} )s,(12-\sqrt{33})s,18s)....เมื่อ 18s\in I^{+}$$
$$ชุดที่3....(x,y,z)=((18+\sqrt{142} )s,(18-\sqrt{142})s,30s)....เมื่อ 30s\in I^{+}$$
$$ชุดที่4....(x,y,z)=((36+\sqrt{899} )s,(36-\sqrt{899})s,66s)....เมื่อ 66s\in I^{+}$$

ซึ่งจากเซตคำตอบดังกล่าวยังไม่มี $(x,y,z)\in I^{+}\times I^{+}\times I^{+}$
แต่คาดว่าผลเฉลยมันน่าจะมีเป็นอนันต์ชุด(ไม่แน่ใจ) ดูจากแนวโน้มแล้ว มันก็น่าจะมีสัก 1 ชุดคำตอบน่าที่ใช่........
ไม่ค่อยมีเวลา แต่อยากเสนอให้ฟังคร่าวๆครับ ดังนี้

สมมติว่าเรามีสมการกำลังสองอยู่หนึ่งสมการ สมมติว่าเป็น

$x^2+4x+6=0$ ก็แล้วกัน ลองสังเกตดูว่าเราหาคำตอบที่เป็นจำนวนจริงไม่ได้

จริงไหมครับ แต่พอมีใครซักคนคิดระบบของจำนวนเชิงซ้อนออกมา ก็มีคำตอบทันที

ก็เท่ากับว่า คนๆนั้นใช้ตรรกะในการขยายเซตคำตอบเหมือนกัน

คือแทนที่จะหาคำตอบบนเซตของจำนวนจริง ก็ไปหาเป็นเซตของเชิงซ้อนแทน

ทีนี้ไอเดียคือการขยายเซตคำตอบออกไปเป็นจำนวนเชิงซ้อน

มันยังสรุปไม่ได้ 100% ถึงพฤติกรรมการเกิดรากของเซตคำตอบก่อนขยายครับ

ลองมองแบบนี้ดู สมการ $x^2+4x+6=0$ หารากบน $\mathbb{R}$ จะได้ว่า "ไม่มี"

พอมาทำเป็นหารากบน $\mathbb{C}$ โดยที่ $\mathbb{R} \subset \mathbb{C}$ เหมือนกับว่าจำนวนเชิงซ้อนมีความทั่วไปกว่าจำนวนจริง

(โดยการเซทให้สัมประสิทธิ์หน้า $i$ เป็นศูนย์) ปรากฏว่ามีรากพอดี

ก็เท่ากับว่ามันมีรากบนขอบเขตที่ขยายออกไป แต่ "ไม่มี" รากบนขอบเขตเดิม

----------------------------------------------------------------------

กลับมาดูที่ความเห็นล่าสุดของคุณข้างบน คือการดู $(x,y) \in \mathbb{R}^2$

แล้วปรากฏว่าไปเจอคำตอบ พอลดขอบเขตมาเป็น $(x,y) \in \mathbb{N}^2$

มันจะสรุปว่าไม่มีหรือมีแบบตัวอย่างที่ผมยกไว้ข้างบนไม่ได้ เพราะตัวอย่างข้างบน

เรารู้ๆกันด้วยความรู้ของจำนวนเชิงซ้อนม.ปลายที่ไม่ได้ซับซ้อนมาก ว่ามีหรือไม่มีคำตอบ

พอกลับมามองที่ FLT กรณี $n=3$ การที่คุณกำลังจะสรุปคำตอบโดยวิธีขยายขอบเขต

ต่อให้เจอคำตอบบนขอบเขตที่ขยายออกไป ก็สรุปกลับมาที่ขอบเขตก่อนขยายไม่ได้ครับ

สมมติว่าถ้ามัน "ไม่มี" คำตอบบนขอบเขตที่ขยาย แล้วสรุปว่า "ไม่มี" คำตอบในขอบเขตก่อนขยาย

อันนี้ "อาจจะ" ได้ครับ เพราะ $\mathbb{N} \subset \mathbb{R}$ และ $\mathbb{R} \subset \mathbb{C}$ เซตนึงมีความทั่วไปมากกว่าอีกเซต

กลับมาที่คำถามที่ผมเคยถามว่า ว่าถ้าหากเซทที่ขยายออกไป ดัน "มี" คำตอบมาละ

มันก็ใช่ว่าจะสรุปกลับมาที่ขอบเขตก่อนขยายได้ว่า มีหรือไม่มี 100% ครับ

การสรุปผล เราจะสรุปจากสิ่งที่เพียงพอให้สรุปเท่านั้นครับ และคำตอบที่คุณหาออกมาได้

เป็นแค่คำตอบกรณีเฉพาะที่ $x+y , xy$ เป็นจำนวนเต็มบวกแค่นั้นครับ

คำตอบบนโดเมนขยายขอบออกไป มีได้เป็นอนันต์ไม่ต้องสงสัยครับ

ปล. FLT มีความ sharp และ strong สูงมากครับ พวก capability ต่ำๆไม่มีทางทุบลงครับ

12 พฤศจิกายน 2016 11:09 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ Aquila
ตอบพร้อมอ้างอิงข้อความนี้