ดูหนึ่งข้อความ
  #2  
Old 09 ธันวาคม 2016, 09:43
Shane123456789 Shane123456789 ไม่อยู่ในระบบ
สมาชิกใหม่
 
วันที่สมัครสมาชิก: 09 ธันวาคม 2016
ข้อความ: 2
Shane123456789 is on a distinguished road
Default

$x^2$=$cos^2(\frac{a-b}{2})$=$\frac{cos(a-b)+1}{2}$


$\bmatrix{sina&cosa&1\\ sinb&cosb&1\\sinc&cosc&1}$$\bmatrix{sina&sinb&sinc\\ cosa&cosb&cosc\\1&1&1}$=$\bmatrix{2&2x^2&2z^2\\2x^2&2&2y^2\\2z^2&2y^2&2}$

$det\bmatrix{sina&cosa&1\\ sinb&cosb&1\\sinc&cosc&1}$$det\bmatrix{sina&sinb&sinc\\ cosa&cosb&cosc\\1&1&1}$=$det\bmatrix{2&2x^2&2z^2\\2x^2&2&2y^2\\2z^2&2y^2&2}$

จาก$det\bmatrix{sina&cosa&1\\ sinb&cosb&1\\sinc&cosc&1}$=$det\bmatrix{sina&sinb&sinc\\ cosa&cosb&cosc\\1&1&1}$
ดังนั้น $det\bmatrix{2&2x^2&2z^2\\2x^2&2&2y^2\\2z^2&2y^2&2}\ge0$
$det\bmatrix{1&x^2&z^2\\x^2&1&y^2\\z^2&y^2&1}\ge0$
$1+2x^2y^2z^2-x^4-y^4-z^4\ge0$

$\therefore1+2x^2y^2z^2\ge x^4+y^4+z^4$
ตอบพร้อมอ้างอิงข้อความนี้