ดูหนึ่งข้อความ
  #2  
Old 27 กรกฎาคม 2020, 20:51
Anton's Avatar
Anton Anton ไม่อยู่ในระบบ
เริ่มฝึกวรยุทธ์
 
วันที่สมัครสมาชิก: 27 กรกฎาคม 2020
ข้อความ: 20
Anton is on a distinguished road
Send a message via ICQ to Anton Send a message via AIM to Anton Send a message via MSN to Anton Send a message via Yahoo to Anton Send a message via Skype™ to Anton
Default

อ้างอิง:
Problem. Let $c$ be a rational number. Prove that the cubic equation $$x^3-3cx^2-3cx+c=0$$ has at most one rational solution.
The case $c=0$ is a counterexample. All three roots of this cubic polynomial are rational numbers (i.e., they are all zero).
But let's ignore that, since the asker may not count multiplicities of roots. So, we assume $c\neq 0$.

The discriminant (with respect to $x$) of the cubic polynomial $x^3-3cx^2-3cx+c$ is $27c^2(7c^2+10c-1)$. If this polynomial has at least two rational roots, then all roots are ratioals. Thus, $27c^2(7c^2+10c-1)$ must be a perfect square of a rational numbers. Hence,
$$t:=\frac{27c^2(7c^2+10c-1)}{(3c)^2}=3(7c^2+10c-1)$$
is a perfect square of a rational number.

Let $v_p$ denote the $p$-adic valuation for each prime natural number $p$. Now, if $v_3(c)>0$, then $v_3(t)=1$ is odd. If $v_3(c)=0$, then $v_3(t)=1$ as well. On the other hand, if $v_3(c)<0$, then $v_3(t)=1+2v_3(c)$ is also an odd integer. Thus, $t$ cannot be a perfect square.
__________________
Потом доказывай, что ты не верблюд.

29 กรกฎาคม 2020 02:41 : ข้อความนี้ถูกแก้ไขแล้ว 2 ครั้ง, ครั้งล่าสุดโดยคุณ Anton
ตอบพร้อมอ้างอิงข้อความนี้