หัวข้อ: ปิทาโกรัส
ดูหนึ่งข้อความ
  #11  
Old 08 มีนาคม 2008, 14:38
cos cos ไม่อยู่ในระบบ
สมาชิกใหม่
 
วันที่สมัครสมาชิก: 08 มีนาคม 2008
ข้อความ: 1
cos is on a distinguished road
Default Pythagoras

To K. Top & Gon please proof the Pythagoras theory in detail by your easy method.

I can not proof your method by my self.

And why below diificulty to proof.

A Proof of the Pythagorean Theorem From Heron's Formula
Let the sides of a triangle have lengths a,b and c. Introduce the semiperimeter p = (a + b + c)/2 and the area S. Then Heron's formula asserts that

S2 = p(p - a)(p - b)(p - c)

W.Dunham analyzes the original Heron's proof in his Journey through Genius.

For the right triangle with hypotenuse c, we have S = ab/2. We'll modify the right hand side of the formula by noting that

p - a = (- a + b + c)/2, p - b = (a - b + c)/2, p - c = (a + b - c)/2

It takes a little algebra to show that

16S2 = (a + b + c)(- a + b + c)(a - b + c)(a + b - c)
= 2a2b2 + 2a2c2 + 2b2c2 - (a4 + b4 + c4)


For the right triangle, 16S2 = 4a2b2. So we have

4a2b2= 2a2b2 + 2a2c2 + 2b2c2 - (a4 + b4 + c4)

Taking all terms to the left side and grouping them yields

(a4 + 2a2b2 + b4) - 2a2c2 - 2b2c2 + c4 = 0

With a little more effort

(a2 + b2)2 - 2c2(a2 + b2) + c4 = 0

And finally [(a2 + b2) - c2]2 = 0


Remark
For a quadrilateral with sides a, b, c and d inscribed in a circle there exists a generalization of Heron's formula discovered by Brahmagupta. In this case, the semiperimeter is defined as p = (a + b + c + d)/2. Then the following formula holds

S2 = (p - a)(p - b)(p - c)(p - d)

Since any triangle is inscribable in a circle, we may let one side, say d, shrink to 0. This leads to Heron's formula.

References
W. Dunham, Journey through Genius, Penguin Books, 1991


Thank you
ตอบพร้อมอ้างอิงข้อความนี้