หัวข้อ: ข้อสอบ 7th TMO
ดูหนึ่งข้อความ
  #22  
Old 04 พฤษภาคม 2010, 04:23
passer-by passer-by ไม่อยู่ในระบบ
ผู้พิทักษ์กฎทั่วไป
 
วันที่สมัครสมาชิก: 11 เมษายน 2005
ข้อความ: 1,442
passer-by is on a distinguished road
Default

ข้อ 5 วันที่ 2 โจทย์สวยดีครับ

ถ้าลองเปลี่ยนมุมมองจากโจทย์ FE มาเป็น โจทย์เรขาคณิต ผสมพีชคณิต จะง่ายกว่าเดิมเยอะเลย

จริงๆ เงื่อนไขฟังก์ชัน ก็เหมือนเรา label จำนวนจริงให้จุดทุกจุดบนระนาบ XY โดย มีข้อแม้ว่า ผลบวกค่าที่ทุกจุดมุมของสี่เหลี่ยมรูปข้าวหลามตัดใดๆ ต้องเป็น 2010

ลองดูรูปข้างล่างประกอบครับ


รวมค่าตัวเลขของจุดมุมของข้าวหลามตัด 5 รูป (4 รูปเล็กกับ 1 รูปใหญ่) จะได้สมการ

2(a+b+c+d+e+f+g+h+i)+2e = (5)(2010)

(a+b+c+d+e+f+g+h+i)+e = (5)(1005)

(a+b+d+e)+(e+f+h+i) +(c+g) = 5025

ดังนั้น c+g = 1005

ซึ่งส่งผลให้ a+i = 1005

เท่ากับว่า ตอนนี้ ผลบวกมุมตรงข้ามของข้าวหลามตัดใหญ่ เป็น 1005

จากนั้นถ้าเราแบ่ง cbef ,edgh เป็น 4 รูปย่อย เหมือนรูปใหญ่ ก็จะได้ c+e =1005 และ e+g =1005

ดังนั้น g= e= c

ในทำนองเดียวกัน จาก a+i =1005 ก็จะได้ a= i = e

สรุปว่า a= i=c=g = 502.5

แต่รูปนี้ สร้างตรงไหนบนระนาบ XY ก็ให้จุดมุมเป็น 502.5 เสมอ ดังนั้น จุดทุกจุดถูก label ด้วยค่าคงที่ 502.5

---------------------------------------------------------------------------
ข้อ 4 วันที่ 2 ตรงช่วงแรกที่พิสูจน์ว่าเป็นสามเหลี่ยม ไม่ยากครับ ขอพิสูจน์แค่เฉพาะอสมการส่วนสูงแล้วกัน

แนวคิดคร่าวๆ คือ จาก law of cosine : $ b_3^2+c_3^2 -2b_3c_3 \cos A_3 =a_3^2$

สุดท้าย จัดรูปแล้วจะได้ $ b_3c_3 \cos A_3 = b_2c_2 \cos A_2+ b_1c_1 \cos A_1 $

พอยกกำลังสองทั้ง 2 ข้าง แล้วจัดรูปอีกครั้ง จะได้

$(b_1c_2\cos A_1 - b_2c_1\cos A_2)^2 +(b_1c_2 \sin A_1)^2 +(b_2c_1 \sin A_2)^2 = 4(\Delta_3^2 -\Delta_1^2-\Delta_2^2 ) $

ดังนั้น $ (b_1c_2 \sin A_1)^2 +(b_2c_1 \sin A_2)^2 \leq 4(\Delta_3^2 -\Delta_1^2-\Delta_2^2 )$

ซึ่งสมมูลกับ $$ \frac{\Delta_3^2}{c_3^2} \,\, \geq \,\, \frac{\Delta_1^2}{c_1^2} \,+\,\frac{\Delta_2^2}{c_2^2} \Rightarrow r_3^2 \,\,\geq \,\, r_1^2+ r_2^2 $$

Note :สัญลักษณ์ $ \Delta $ หมายถึงพื้นที่สามเหลี่ยมครับ
----------------------------------------------------------------------
p.s. อยากได้วิธีข้อ 8 วันแรก ครับ
__________________
เกษียณตัวเอง ปลายมิถุนายน 2557 แต่จะกลับมาเป็นครั้งคราว

04 พฤษภาคม 2010 07:09 : ข้อความนี้ถูกแก้ไขแล้ว 2 ครั้ง, ครั้งล่าสุดโดยคุณ passer-by
ตอบพร้อมอ้างอิงข้อความนี้