หัวข้อ: อสมการ
ดูหนึ่งข้อความ
  #4  
Old 23 มกราคม 2016, 19:46
Thgx0312555's Avatar
Thgx0312555 Thgx0312555 ไม่อยู่ในระบบ
กระบี่ประสานใจ
 
วันที่สมัครสมาชิก: 12 สิงหาคม 2011
ข้อความ: 885
Thgx0312555 is on a distinguished road
Default

อ้างอิง:
ข้อความเดิมเขียนโดยคุณ จูกัดเหลียง View Post
Let $a,b,c>0$ and $a+b+c=3$ Prove that $$\frac{1}{\Big((a-b)^2+3bc+3ca\Big)^2}+\frac{1}{\Big((b-c)^2+3ca+3ab\Big)^2}+\frac{1}{\Big((c-a)^2+3ab+3bc\Big)^2}\ge \frac{1}{12}$$
$\displaystyle \frac{1}{\Big((a-b)^2+3bc+3ca\Big)^2}+\frac{1}{\Big((b-c)^2+3ca+3ab\Big)^2}+\frac{1}{\Big((c-a)^2+3ab+3bc\Big)^2}$

$\displaystyle \ge \frac{1}{3} \Big( \frac{1}{(a-b)^2+3bc+3ca}+\frac{1}{(b-c)^2+3ca+3ab}+\frac{1}{(c-a)^2+3ab+3bc} \Big)^2$

$\displaystyle \ge \frac{1}{3} \Big( \frac{9}{2(a^2+b^2+c^2)+4(ab+bc+ca)}\Big)^2 = \frac{1}{3} \cdot \Big( \frac{9}{2\cdot 3^2} \Big)^2 = \frac{1}{12}$
__________________
----/---~Alice~ จงรับรู้ไว้ ชื่อแห่งสีสันหนึ่งเดียวที่แสดงผล
---/---- ~Blue~ นี่คือ สีแห่งความหลังอันกว้างใหญ่ของเว็บบอร์ดนี้
ตอบพร้อมอ้างอิงข้อความนี้