หัวข้อ: Inequality Marathon
ดูหนึ่งข้อความ
  #13  
Old 30 กรกฎาคม 2005, 17:30
gools's Avatar
gools gools ไม่อยู่ในระบบ
บัณฑิตฟ้า
 
วันที่สมัครสมาชิก: 26 เมษายน 2004
ข้อความ: 390
gools is on a distinguished road
Post

อ้างอิง:
ข้อความเดิมของคุณ devil jr.:
a,b,c are positive reals such that abc=1.
Prove that \frac{a^2+2bc}{a^3+b^2+c^2}+\frac{b^2+2ca}{a^2+b^3+c^2}+\frac{c^2+2ab}{a^2+b^2+c^3} 3
จาก Cauchy เราได้ว่า
\[\sum \frac{a^2+2bc}{a^3+b^2+c^2} \leq \sum \frac{a^2+b^2+c^2}{a^3+b^2+c^2}=(a^2+b^2+c^2)\sum\frac{1}{a^3+b^2+c^2}\leq (a^2+b^2+c^2)\sum\frac{a+c^2+c^2}{(a^2+b^2+c^2)^2}=\frac{ \sum a +2\sum a^2}{a^2+b^2+c^2}\]

และโดย Power Mean และ Am-Gm เราได้ว่า
\[a^2+b^2+c^2 \geq \frac{(a+b+c)^2}{3}\geq \frac{3\sqrt[3]{abc}(a+b+c)}{3} = a+b+c\]

ดังนั้น \(\displaystyle{\frac{ \sum a +2\sum a^2}{a^2+b^2+c^2}} \leq \displaystyle{\frac{3(a^2+b^2+c^2)}{a^2+b^2+c^2}}=3\)

01 สิงหาคม 2005 19:11 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ gools
ตอบพร้อมอ้างอิงข้อความนี้