ดูหนึ่งข้อความ
  #9  
Old 03 เมษายน 2016, 01:24
ThE-dArK-lOrD ThE-dArK-lOrD ไม่อยู่ในระบบ
เริ่มฝึกวรยุทธ์
 
วันที่สมัครสมาชิก: 01 เมษายน 2016
ข้อความ: 22
ThE-dArK-lOrD is on a distinguished road
Default

For second problem of geometry, it can be solved without law of sines
Let $O$ be the circumcenter of ABC and let $\omega$ be the circle centered at $D$ with radius $BD$
Let lines $AB,AC$ meet $\omega$ at $P,Q$, respectively. Since $\angle{PBQ}=\angle{BQC}+\angle{BAC}=\frac{1}{2} \cdot (\angle{BDC} + \angle{DOC}) = 90^{\circ}$
We see that $PQ$ is a diameter of $\omega$ and passes through $D$.
Since $\angle{ABC} = \angle{AQP}$ and $\angle{ACB} = \angle{APQ}$,
So $\triangle{ABC} \sim \triangle{AQP}$ and since $M$ is midpoint of $BC$ and $D$ is midpoint of $PQ$
The similarity implies that $\angle{BAM} = \angle{QAD}$ and complete the prove

03 เมษายน 2016 01:27 : ข้อความนี้ถูกแก้ไขแล้ว 4 ครั้ง, ครั้งล่าสุดโดยคุณ ThE-dArK-lOrD
ตอบพร้อมอ้างอิงข้อความนี้