หัวข้อ: ลิมิต
ดูหนึ่งข้อความ
  #7  
Old 12 พฤศจิกายน 2008, 20:52
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG ไม่อยู่ในระบบ
ลมปราณคุ้มครองร่าง
 
วันที่สมัครสมาชิก: 22 มกราคม 2006
ข้อความ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

I also solved it, but just for all real ${\alpha}\geq 0$...

At first, when $\alpha=0$, then we have $S_{\alpha}(n)=1,\forall n\in\mathbb{N}$

Consider $\alpha >0$.

Notice that in this case $\displaystyle{A_{\alpha}(n)<B_{\alpha}(n),\forall n\in\mathbb{N}}$.

Hence, it follows that

$$1-\frac{(2n)^{\alpha}}{B_{\alpha}(n)}=\frac{0^{\alpha}+2^{\alpha}+\cdots+(2n-2)^{\alpha}}{B_{\alpha}(n)}<S_{\alpha}(n)=\frac{A_{\alpha}(n)}{B_{\alpha}(n)}<\frac{2^{\alpha}+4^{\alpha}+\cdots+(2n)^{\alpha}}{ B_{\alpha}(n)}=1$$

Then observe that

$$\lim_{n \rightarrow \infty} \frac{B_{\alpha}(n)}{(2n)^{\alpha}}= \lim_{ n \rightarrow \infty}\frac{1^{\alpha}+2^{\alpha}+\cdots + n^{\alpha}}{n^{\alpha}}=\lim_{n \rightarrow \infty}n\left[ \frac{1}{n}\sum_{k=1}^{n}f\left( \frac{k}{n} \right) \right]$$

So look at the limit of the first inequality we have $\displaystyle{\lim_{n\rightarrow\infty}S_{\alpha}(n)=1}$.
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$

12 พฤศจิกายน 2008 20:55 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ Timestopper_STG
ตอบพร้อมอ้างอิงข้อความนี้