หัวข้อ: Calculus Marathon (2)
ดูหนึ่งข้อความ
  #43  
Old 01 มีนาคม 2007, 02:04
passer-by passer-by ไม่อยู่ในระบบ
ผู้พิทักษ์กฎทั่วไป
 
วันที่สมัครสมาชิก: 11 เมษายน 2005
ข้อความ: 1,442
passer-by is on a distinguished road
Smile

อ้างอิง:
ข้อความเดิมของคุณ Mastermander:
78. Compute $$ \int_0^\infty \arctan\dfrac{\Theta^2}{x^2}\,dx $$
ไม่แน่ใจว่ามีวิธีสั้นกว่านี้หรือเปล่านะครับ

Let $ u= \frac{\Theta}{x} $

And integration becomes $$ \Theta \int_0^\infty \dfrac{\arctan u^2}{u^2}\,\, du $$

$$ \begin{array}{rcl} \int_0^\infty \dfrac{\arctan u^2}{u^2}\,\, du &=& \int_0^\infty \dfrac{1}{u^2}\bigg(\int_0^u \dfrac{2v}{1+v^4}\,\, dv\bigg) \,\, du \\ &=& \int_0^\infty\!\!\! \int_0^u \dfrac{2v}{u^2(1+v^4)}\,\, dvdu \\ &=& \int_0^\infty\!\!\! \int_v^{\infty} \dfrac{2v}{u^2(1+v^4)}\,\, dudv \\&=& \int_0^\infty \dfrac{2}{1+v^4}\,\, dv \\&=&\int_0^\infty \dfrac{v^2+1}{v^4+1} - \dfrac{v^2-1}{v^4+1}\,\, dv \\&=& \int_0^\infty \dfrac{1+\frac{1}{v^2}}{v^2+\frac{1}{v^2}} - \dfrac{1-\frac{1}{v^2}}{v^2+\frac{1}{v^2}}\,\, dv \end{array} $$

First integrand : use $ w= v- \frac{1}{v}$
Second integrand : use $ z= v +\frac{1}{v}$

Finally , solution of question 78 is $ \frac{\Theta \pi}{\sqrt{2}} $
__________________
เกษียณตัวเอง ปลายมิถุนายน 2557 แต่จะกลับมาเป็นครั้งคราว
ตอบพร้อมอ้างอิงข้อความนี้