Mathcenter Forum  

Go Back   Mathcenter Forum > คณิตศาสตร์โอลิมปิก และอุดมศึกษา > ทฤษฎีจำนวน
สมัครสมาชิก คู่มือการใช้ รายชื่อสมาชิก ปฏิทิน ค้นหา ข้อความวันนี้ ทำเครื่องหมายอ่านทุกห้องแล้ว

ตั้งหัวข้อใหม่ Reply
 
เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
  #1  
Old 20 เมษายน 2016, 21:45
ohmohm ohmohm ไม่อยู่ในระบบ
หัดเดินลมปราณ
 
วันที่สมัครสมาชิก: 14 กันยายน 2013
ข้อความ: 47
ohmohm is on a distinguished road
Default โจทย์ พิสูจน์ หาร 2^n-1 ไม่ลงตัว

จงพิสูจน์ว่าถ้า $n$ เป็นจำนวนเต็มซี่ง $n>1$ แล้ว $n \nmid (2^n-1)$
ตอบพร้อมอ้างอิงข้อความนี้
  #2  
Old 20 เมษายน 2016, 23:13
Thgx0312555's Avatar
Thgx0312555 Thgx0312555 ไม่อยู่ในระบบ
กระบี่ประสานใจ
 
วันที่สมัครสมาชิก: 12 สิงหาคม 2011
ข้อความ: 885
Thgx0312555 is on a distinguished road
Default

จำนวน $n>1$ จะมีสมบัติสวยๆ อย่างนึงก็คือมีจำนวนเฉพาะที่น้อยที่สุดที่หารมันลงตัว
__________________
----/---~Alice~ จงรับรู้ไว้ ชื่อแห่งสีสันหนึ่งเดียวที่แสดงผล
---/---- ~Blue~ นี่คือ สีแห่งความหลังอันกว้างใหญ่ของเว็บบอร์ดนี้
ตอบพร้อมอ้างอิงข้อความนี้
  #3  
Old 21 เมษายน 2016, 18:13
ohmohm ohmohm ไม่อยู่ในระบบ
หัดเดินลมปราณ
 
วันที่สมัครสมาชิก: 14 กันยายน 2013
ข้อความ: 47
ohmohm is on a distinguished road
Default

พอจะได้แนวทางแล้วครับ ขอบคุณครับ http://oeis.org/wiki/2%5En_mod_n#2n_..._1_.28mod_n.29
ตอบพร้อมอ้างอิงข้อความนี้
ตั้งหัวข้อใหม่ Reply


เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
ค้นหาในหัวข้อนี้:

ค้นหาขั้นสูง

กฎการส่งข้อความ
คุณ ไม่สามารถ ตั้งหัวข้อใหม่ได้
คุณ ไม่สามารถ ตอบหัวข้อได้
คุณ ไม่สามารถ แนบไฟล์และเอกสารได้
คุณ ไม่สามารถ แก้ไขข้อความของคุณเองได้

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
ทางลัดสู่ห้อง


เวลาที่แสดงทั้งหมด เป็นเวลาที่ประเทศไทย (GMT +7) ขณะนี้เป็นเวลา 14:39


Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha