Mathcenter Forum  

Go Back   Mathcenter Forum > ¤³ÔµÈÒʵÃìâÍÅÔÁ»Ô¡ áÅÐÍØ´ÁÈÖ¡ÉÒ > ¤³ÔµÈÒʵÃìÍØ´ÁÈÖ¡ÉÒ
ÊÁѤÃÊÁÒªÔ¡ ¤ÙèÁ×Í¡ÒÃãªé ÃÒª×èÍÊÁÒªÔ¡ »¯Ô·Ô¹ ¢éͤÇÒÁÇѹ¹Õé

µÑé§ËÑÇ¢éÍãËÁè Reply
 
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ ¤é¹ËÒã¹ËÑÇ¢é͹Õé
  #1  
Old 19 ¡ØÁÀҾѹ¸ì 2006, 22:09
natto's Avatar
natto natto äÁèÍÂÙèã¹Ãкº
ÊÁÒªÔ¡ãËÁè
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 14 ¡Ñ¹ÂÒ¹ 2005
¢éͤÇÒÁ: 9
natto is on a distinguished road
Post ͹ءÃÁ¹Õéá¡éÍÂèҧ䧤Ð

k-1
S3/2 i2(1/2)i
i=0
·ÓÍÂèÒ§äè֧ä´é¤ÓµÍºÍÂèÒ§¹Õé
-6[(1/2k2+k+3/2)(1/2)k-3/2]
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #2  
Old 20 ¡ØÁÀҾѹ¸ì 2006, 20:21
Mastermander's Avatar
Mastermander Mastermander äÁèÍÂÙèã¹Ãкº
¡ÃкÕè»ÃÐÊÒ¹ã¨
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 14 µØÅÒ¤Á 2005
¢éͤÇÒÁ: 796
Mastermander is on a distinguished road
Post

¢Íâ·É¤ÃѺÁÒªéÒä»
¡ÓÅѧ·ÓãËéÍÂÙè¤ÃѺ
__________________
âÅ¡¹ÕéÁÕ¤¹ÍÂÙè 10 »ÃÐàÀ· ¤×Í ¤¹·Õèà¢éÒã¨àÅ¢°Ò¹Êͧ áÅФ¹·ÕèäÁèà¢éÒã¨
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #3  
Old 20 ¡ØÁÀҾѹ¸ì 2006, 21:20
Mastermander's Avatar
Mastermander Mastermander äÁèÍÂÙèã¹Ãкº
¡ÃкÕè»ÃÐÊÒ¹ã¨
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 14 µØÅÒ¤Á 2005
¢éͤÇÒÁ: 796
Mastermander is on a distinguished road
Post

$$ \sum_{i=0}^{k-1}\frac{3}{2}i^2\bigg(\frac{1}{2}\bigg)^i =\frac{3}{2} \sum_{i=0}^{k-1}i^2\bigg(\frac{1}{2}\bigg)^i $$

$$ \sum_{i=0}^{k-1}\frac{3}{2}i^2\bigg(\frac{1}{2}\bigg)^i = \frac{3}{2}\Bigg(0+1(\frac{1}{2})+4(\frac{1}{2})^2+\dots+(k-1)^2(\frac{1}{2})^{k-1}\Bigg)$$

$$ãËé\quad S_k=\Bigg(1(\frac{1}{2})+4(\frac{1}{2})^2+\dots+(k-1)^2(\frac{1}{2})^{k-1}\Bigg)\quad ...(1)$$

$$\frac{1}{2}S_k = \Bigg(1(\frac{1}{2})^2+4(\frac{1}{2})^3+\dots+(k-1)^2(\frac{1}{2})^k\Bigg) \quad ...(2)$$

\[ (1)-(2);\frac{1}{2}S_k=\Bigg(\frac{1}{2}+3(\frac{1}{2})^2+5(\frac{1}{2})^3+\dots+(2k-3)(\frac{1}{2})^{k-1}-(k-1)^2(\frac{1}{2})^k\Bigg) \]

\[\frac{1}{2}S_k=\Bigg(\bigg(\frac{1}{2}+3(\frac{1}{2})^2+5(\frac{1}{2})^3+\dots+(2k-3)(\frac{1}{2})^{k-1}\bigg)-(k-1)^2(\frac{1}{2})^k\Bigg) \]

$$ãËé \quad S_g=\bigg(\frac{1}{2}+3(\frac{1}{2})^2+5(\frac{1}{2})^3+\dots+(2k-3)(\frac{1}{2})^{k-1}\bigg)\quad ...(3)$$

$$\frac{1}{2}S_g=(\frac{1}{2})^2+3(\frac{1}{2})^3+5(\frac{1}{2})^4+\dots+(2k-3)(\frac{1}{2})^{k} \quad ...(4)$$

$$(3)-(4);\frac{1}{2}S_g=\bigg(\frac{1}{2}+2(\frac{1}{2})^2+2(\frac{1}{2})^3+\dots+2(\frac{1}{2})^{k-1}-(2k-3)(\frac{1}{2})^k\bigg)$$

$$\frac{1}{2}S_g=\bigg(\frac{1}{2}+2\Big((\frac{1}{2})^2+(\frac{1}{2})^3+(\frac{1}{2})^4+\dots+(\frac{1}{2})^{k-1}\Big)-(2k-3)(\frac{1}{2})^k\bigg)$$

$$\frac{1}{2}S_g=\Bigg(\frac{1}{2}+2\bigg(\frac{\frac{1}{4}\big(1-(\frac{1}{2})^{k-2}\big)}{1-1/2}\bigg)-(2k-3)(\frac{1}{2})^k\Bigg)$$

$$\frac{1}{2}S_g=\bigg(\frac{1}{2}+1-4(\frac{1}{2})^k-(2k-3)(\frac{1}{2})^k\bigg)$$

$$S_g=\bigg(3-(4k+2)(\frac{1}{2})^k\bigg) $$

$$S_k=2\Bigg(\bigg(3-(4k+2)(\frac{1}{2})^k\bigg)-(k-1)^2(\frac{1}{2})^k\Bigg)$$

$$S_k=2\Big(3-(k^2+2k+3)(\frac{1}{2})^k\Big)$$

$$\sum_{i=0}^{k-1}\frac{3}{2}i^2\bigg(\frac{1}{2}\bigg)^i = \frac{3}{2}S_k$$

$$\sum_{i=0}^{k-1}\frac{3}{2}i^2\bigg(\frac{1}{2}\bigg)^i = -3\bigg((k^2+2k+3)(\frac{1}{2})^k-3\bigg)$$
__________________
âÅ¡¹ÕéÁÕ¤¹ÍÂÙè 10 »ÃÐàÀ· ¤×Í ¤¹·Õèà¢éÒã¨àÅ¢°Ò¹Êͧ áÅФ¹·ÕèäÁèà¢éÒã¨
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
µÑé§ËÑÇ¢éÍãËÁè Reply



¡®¡ÒÃÊ觢éͤÇÒÁ
¤Ø³ äÁèÊÒÁÒö µÑé§ËÑÇ¢éÍãËÁèä´é
¤Ø³ äÁèÊÒÁÒö µÍºËÑÇ¢éÍä´é
¤Ø³ äÁèÊÒÁÒö Ṻä¿ÅìáÅÐàÍ¡ÊÒÃä´é
¤Ø³ äÁèÊÒÁÒö á¡é䢢éͤÇÒÁ¢Í§¤Ø³àͧä´é

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
·Ò§ÅÑ´ÊÙèËéͧ


àÇÅÒ·ÕèáÊ´§·Ñé§ËÁ´ à»ç¹àÇÅÒ·Õè»ÃÐà·Èä·Â (GMT +7) ¢³Ð¹Õéà»ç¹àÇÅÒ 22:08


Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha