Mathcenter Forum  

Go Back   Mathcenter Forum > ¤³ÔµÈÒʵÃìâÍÅÔÁ»Ô¡ áÅÐÍØ´ÁÈÖ¡ÉÒ > ¤³ÔµÈÒʵÃìÍØ´ÁÈÖ¡ÉÒ
ÊÁѤÃÊÁÒªÔ¡ ¤ÙèÁ×Í¡ÒÃãªé ÃÒª×èÍÊÁÒªÔ¡ »¯Ô·Ô¹ ¢éͤÇÒÁÇѹ¹Õé

µÑé§ËÑÇ¢éÍãËÁè Reply
 
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ ¤é¹ËÒã¹ËÑÇ¢é͹Õé
  #31  
Old 27 ¾ÄȨԡÒ¹ 2007, 19:46
RoSe-JoKer's Avatar
RoSe-JoKer RoSe-JoKer äÁèÍÂÙèã¹Ãкº
ºÑ³±Ôµ¿éÒ
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 25 ¾ÄȨԡÒ¹ 2007
¢éͤÇÒÁ: 390
RoSe-JoKer is on a distinguished road
Default

¨Ñ´ãËéµÒÁ·Õè¢ÍÁÒáÅéǹФÃѺ ^^
ÃÙ»ÀÒ¾·ÕèṺÁÒ´éÇÂ
   
__________________
Rose_joker @Thailand
Serendipity
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #32  
Old 27 ¾ÄȨԡÒ¹ 2007, 22:29
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Default

·Õè͸ԺÒÂÅèÒÊØ´¹Õè âÍà¤áÅéǤÃѺ áµè¼ÁËÑ¡¤ÃÖ觤Ðá¹¹ à¾ÃÒÐ ãªé Tchebyshev «éӡѺ¤Ø³ kanakon ¤§äÁèÇèÒÍÐäùФÃѺ à¾ÃÒÐÂѧ䧤Ðá¹¹¤Ø³ Rose-joker ¡ç¹Óâ´è§ÍÂÙèáÅéÇã¹ part 2

ÊÃØ»¤Ðá¹¹µÍ¹¹Õé

PART 1
Kanakon : 6 (2+4)
Timestopper:5.5 (1+3+1.5)

PART 2
Kanakon:4 (2+2)
Rose-Joker: 9.5 (1+4+3+1.5)

ÍéÍ ! à¡×ͺÅ×Á ¼ÁÇèҨТÂѺ deadline ÁÒà»ç¹ÈØ¡Ãì·Õè 30 ¾.Â. àÇÅÒ 5 ·ØèÁ áÅéǡѹ (¡ÅÑÇàÊÒÃì 10 âÁ§ µ×è¹äÁè·Ñ¹ )
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #33  
Old 28 ¾ÄȨԡÒ¹ 2007, 18:28
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³¤ØéÁ¤ÃͧÃèÒ§
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 22 Á¡ÃÒ¤Á 2006
¢éͤÇÒÁ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

5.1.(Part1)
$\displaystyle{\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdot ...\cdot(2n-1)}{2\cdot 4\cdot 6\cdot ...\cdot(2n)}\left(\frac{1}{2}\right)^{n}\leq\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1}$
Å×Á¾ÔÊÙ¨¹ìÅÙèà¢éÒÍÕ¡ÅФÃѺ
¢Íâ·É´éǹФÃѺ·ÕèÁҵͺªéÒà¾ÃÒÐä»à¢éÒ¤èÒ¸ÃÃÁÐÁÒ2Çѹ¤ÃѺ
¶Ö§ÊÁÒ¸ÔàŤÃѺ§Ò¹¹ÕéÁÕá¹Çâ¹éÁÇèÒÍÒ¨¨Ð·ÓãËé·Ó¢éÍ·ÕèàËÅ×Íä´é
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #34  
Old 28 ¾ÄȨԡÒ¹ 2007, 18:59
kanakon's Avatar
kanakon kanakon äÁèÍÂÙèã¹Ãкº
ºÑ³±Ôµ¿éÒ
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 31 µØÅÒ¤Á 2006
¢éͤÇÒÁ: 523
kanakon is on a distinguished road
Default

à¢éÒÁÒà»ç¹¡ÓÅѧã¨ãËé·Ñé§Êͧ·èÒ¹¼Á¤§ËÁ´»Ñ­­Ò¤Ô´(à¾ÃÒÐÊͺ·Ø¡Çѹ)àÍÒãËé¤Ãº·Ø¡¢éÍàŹФÃѺ
»Å.ÍÂÒ¡àËç¹¢éÍ 3.3 ¹èÒʹء´Õ¹Ð¤ÃѺ
__________________
¤ Ç Ò Á ÃÑ º ¼Ô ´ ª Í º

$$|I-U|\rightarrow \infty $$
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #35  
Old 28 ¾ÄȨԡÒ¹ 2007, 20:36
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Smile

àÃÔèÁ¨Ò¡¡Òà update ¤Ðá¹¹¡è͹¤ÃѺ

PART 1
Kanakon : 6 (2+4)
Timestopper:6 (1+3+2)

PART 2
Kanakon:4 (2+2)
Rose-Joker: 9.5 (1+4+3+1.5)

ÃÕºæÁÒà¡çºãËé¤Ãº·Ø¡¢éÍ ¹Ð¤ÃѺ

à¾ÔèÁ hint ãËéà»ç¹¡ÓÅѧã¨ÍÕ¡¹Ô´

3.2 àÅ¢ k ËÅÑ¡·ÕèäÁèÁÕ 7 ÃÇÁÍÂÙèã¹ËÅÑ¡ ÁÕ¡Õè¨Ó¹Ç¹ àÍèÂ?

3.3 ãªé contradiction áÅéÇÊÃéÒ§¨Ó¹Ç¹¢Öé¹ÁÒ

5.3 Try letting $ u= \frac{1}{x+1}$ áÅÐÃÐËÇèÒ§·Ò§ÍÒ¨¨Ðµéͧãªé series ¢Í§ $ \ln(1-u) , \ln(1+u)$ ºèÍÂÁÒ¡
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #36  
Old 28 ¾ÄȨԡÒ¹ 2007, 21:12
RoSe-JoKer's Avatar
RoSe-JoKer RoSe-JoKer äÁèÍÂÙèã¹Ãкº
ºÑ³±Ôµ¿éÒ
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 25 ¾ÄȨԡÒ¹ 2007
¢éͤÇÒÁ: 390
RoSe-JoKer is on a distinguished road
Default

¤Ø³ Timestopper_STG ä»à¢éÒ¤èÒ¸ÃÃÁÐ Êèǹ¼Áâ´¹âçàÃÕ¹ºÑ§¤ÑºÊͺ¹Ñ¡¸ÃÃÁ ªèÒ§¹èÒàÈÃéÒàÊÕ¨ÃÔ§ - -"
Êèǹ¢éÍ 2 Part 2 ¹Ñ鹶éÒã¤Ã¾ÔÊÙ¨¹ìâ´ÂäÁèãªèàªÍÃìºÔાä´é¼ÁÍÂÒ¡àËç¹ÁÒ¡æàŤÃѺ
__________________
Rose_joker @Thailand
Serendipity

28 ¾ÄȨԡÒ¹ 2007 21:14 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ RoSe-JoKer
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #37  
Old 30 ¾ÄȨԡÒ¹ 2007, 17:54
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³¤ØéÁ¤ÃͧÃèÒ§
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 22 Á¡ÃÒ¤Á 2006
¢éͤÇÒÁ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

5.2.(Part1)
$\displaystyle{S=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n+1}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n+1}H(n)}$
We can see that $\displaystyle{H(n)>1,\forall n>1}$
$\displaystyle{\therefore (n+2)H(n)=(n+1)H(n)+H(n)>(n+1)H(n)+1=(n+1)H(n+1)\rightarrow \frac{H(n)}{n+1}>\frac{H(n+1)}{n+2}}$
$\displaystyle{\therefore\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n+1}H(n)}$ converges by Alternating Series Test
Now observe that $\displaystyle{\frac{\ln(1+x)}{1+x}=\sum_{n=1}^{\infty}(-1)^{n+1}H(n)x^{n}}$
$\displaystyle{\therefore S=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n+1}H(n)=\lim_{\epsilon\rightarrow 1^{-}}\int_{0}^{\epsilon}\frac{\ln(1+x)}{1+x}dx=\frac{\ln^{2}2}{2}}$
¢é͹ÕéäÁèÅ×Á¾ÔÊÙ¨¹ìÇèÒÅÙèà¢éÒáÅéǹФÃѺáµè¨Ð¾ÔÊÙ¨¹ì¶Ù¡ËÃ×Íà»ÅèÒäÁèÃÙé
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #38  
Old 30 ¾ÄȨԡÒ¹ 2007, 19:56
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³¤ØéÁ¤ÃͧÃèÒ§
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 22 Á¡ÃÒ¤Á 2006
¢éͤÇÒÁ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

5.3.(Part1)
$\displaystyle{I=\int_{0}^{\infty}\left(\ln\left(\frac{x^{2}}{x^{2}+3x+2}\right)\right)^{2}dx=\int_{0}^{\infty}\left(2\ln x-\ln(x+1)-\ln(x+2)\right)^{2}dx}$
$\displaystyle{I=\int_{0}^{\infty}\left[4\ln^{2}x-4\ln x\ln(x+1)-4\ln x\ln(x+2)+\ln^{2}(x+1)+2\ln(x+1)\ln(x+2)+\ln^{2}(x+2)\right]dx}$
Substitute $x=u-1$ we gonna get...
$\displaystyle{I=\int_{1}^{\infty}\left[4\ln^{2}(u-1)-4\ln(u-1)\ln u-4\ln(u-1)\ln(u+1)+\ln^{2}u+2\ln u\ln(u+1)+\ln^{2}(u+1)\right]du}$
Substitute $u=\dfrac{1}{x}$ the result will be...
$\displaystyle{I=\int_{0}^{1}\frac{1}{x^{2}}\left[4\ln^{2}(1-x)+\ln^{2}(1+x)-4\ln(1-x)\ln(1+x)\right]dx}$
Now let $\displaystyle{I_{1}=\int_{0}^{1}\frac{ln^{2}(1-x)}{x^{2}}dx,I_{2}=\int_{0}^{1}\frac{\ln^{2}(1+x)}{x^{2}}dx,I_{3}=\int_{0}^{1}\frac{\ln(1-x)\ln(1+x)}{x^{2}}dx,S(a)=\int_{0}^{0<a<1}-\frac{\ln(1-x)}{x}dx}$
$\displaystyle{S(a)=\sum_{k=1}^{\infty}\frac{a^{k}}{k^{2}}=\int_{0}^{a}-\frac{\ln(1-x)}{x}dx=\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k}ue^{-ku}\right]_{0}^{-\ln(1-a)}+\frac{1}{k}\int_{0}^{-\ln(1-a)}e^{-ku}du\right]}$
$\displaystyle{S(a)=\frac{\pi^{2}}{6}-\ln a\ln(1-a)-\sum_{k=1}^{\infty}\frac{(1-a)^{k}}{k^{2}}\rightarrow S(a)+S(1-a)=\frac{\pi^{2}}{6}-\ln a\ln(1-a)}$
Then consider some interesting integral...
$\displaystyle{I(a)=\int_{0}^{-\ln(1-a)}\frac{u^{2}e^{-u}}{(1-e^{-u})^2}du=\sum_{k=1}^{\infty}\int_{0}^{-\ln(1-a)}ku^{2}e^{-ku}du=\sum_{k=1}^{\infty}\left[\left[-u^{2}e^{-ku}\right]_{0}^{-\ln(1-a)}+2\int_{0}^{-\ln(1-a)}ue^{-ku}du\right]}$
$\displaystyle{I(a)=\left(\frac{a-1}{a}\right)\ln^{2}(1-a)+2\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k}ue^{-ku}\right]_{0}^{-\ln(1-a)}+\frac{1}{k}\int_{0}^{-\ln(1-a)}e^{-ku}du\right]}$
$\displaystyle{\therefore I(a)=\left(\frac{a-1}{a}\right)\ln^{2}(1-a)-2\ln a\ln(1-a)-2\sum_{k=1}^{\infty}\frac{(1-a)^k}{k^{2}}+2\sum_{k=1}^{\infty}\frac{1}{k^{2}}}$
$\displaystyle{I_{1}=\lim_{\epsilon\rightarrow 1^{-}}I(\epsilon)=\frac{\pi^{2}}{3}}$
$\displaystyle{I_{2}=I(0.5)=\frac{\pi^{2}}{3}-3\ln^{2}2-2S(0.5)=\frac{\pi^{2}}{6}-2\ln^{2}2}$
$\displaystyle{I_{3}=\int_{0}^{1}\frac{\ln(1-x)\ln(1+x)}{x^{2}}dx=\int_{0}^{1}\frac{\ln(1+x)}{x}dx+\sum_{k=2}^{\infty}\left[\left[\frac{x^{k-1}}{k(k-1)}\ln(1+x)\right]_{0}^{1}-\int_{0}^{1}\frac{x^{k-1}}{k(k-1)(1+x)}dx\right]}$
$\displaystyle{I_{3}=\frac{\pi^{2}}{12}+\ln 2-\sum_{k=2}^{\infty}\left[\int_{0}^{1}\left[\frac{x^{k-1}}{k-1}-\frac{x^{k-1}}{k}\right]\frac{dx}{1+x}\right]=\frac{\pi^{2}}{12}-2\int_{0}^{1}\frac{\ln(1-x)}{x}+\int_{0}^{1}\frac{\ln(1-x)}{x}dx}$
$\displaystyle{I_{3}=\frac{\pi^{2}}{12}+2\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k2^{k}}ue^{-ku}\right]_{0}^{\infty}+\frac{1}{k2^{k}}\int_{0}^{\infty}e^{-ku}du\right]-\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k}ue^{-ku}\right]_{0}^{\infty}+\frac{1}{k}\int_{0}^{\infty}e^{-ku}du\right]}$
$\displaystyle{I_{3}=\frac{\pi^{2}}{12}+2S(0.5)-\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{12}-\ln^{2}2}$
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$

01 ¸Ñ¹ÇÒ¤Á 2007 09:46 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 5 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ Timestopper_STG
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #39  
Old 30 ¾ÄȨԡÒ¹ 2007, 23:01
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³¤ØéÁ¤ÃͧÃèÒ§
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 22 Á¡ÃÒ¤Á 2006
¢éͤÇÒÁ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

¤ÓµÍº¶Ù¡ËÃ×Íà»ÅèÒäÁèÃÙé¹Ð¤ÃѺÃÕº¾ÔÁ¾ìàËÅ×Íà¡Ô¹à´ÕëÂÇàÅÂàÇÅÒ555+
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$

30 ¾ÄȨԡÒ¹ 2007 23:03 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 2 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ Timestopper_STG
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #40  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 00:35
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Smile

â·É·Õ¤ÃѺ àªç¤¢éÍ 5.3 ¹Ò¹ä»¹Ô´

¨ÃÔ§æ ¹éͧ timestopper ÁÒä´éä¡ÅáÅéÇÅèФÃѺ áµèÍÒ¨¨ÐŹµÍ¹ $I_3 $ 仹Դà´ÕÂÇ àžÅÒ´ºÃ÷Ѵ·ÕèÇèÒ

$$\sum_{k=2}^{\infty}\int_{0}^{1}\frac{x^{k-1}}{k-1}\frac{dx}{1+x}=\int_{0}^{1}\frac{\ln(1+x)}{1+x}dx $$

integrand ¢ÇÒÁ×͵éͧà»ç¹ $ \frac{-\ln(1-x)}{1+x}$

¼ÁãËé ¤ÃÖ觹֧¢Í§¤Ðá¹¹àµçÁáÅéǡѹ¤ÃѺ ÊÃØ»¤×Íä´é 2 ¤Ðá¹¹

Êèǹ 5.2 à¡×ͺÊÁºÙóìáÅéÇÅèФÃѺ à¾Õ§áµè ¶éÒ¨Ðãªé Alternating series Test µéͧ show ´éÇÂÇèÒ à»ç¹ decreasing sequence ·Õè ÅÙèà¢éÒËÒÈÙ¹Âì ¹éͧ timestopper Å×ÁµÃ§ converge ÊÙè 0 ¤ÃѺ

áµèÍÂèÒ§Í×蹶١ §Ñé¹¼ÁãËé 2 ¤Ðá¹¹¤ÃѺ

ÊÃØ»¤Ðá¹¹ ¤ÃѺ

PART 1
Kanakon : 6 (2+4)
Timestopper:10 (1+3+2+4)

PART 2
Kanakon:4 (2+2)
Rose-Joker: 9.5 (1+4+3+1.5)

µÍ¹¹Õé ã¤ÃÃÙéµÑÇÇèÒ ä´é¤Ðá¹¹ÊÙ§ÊØ´ part ä˹ ¡çá¨é§·ÕèÍÂÙèÊ觢ͧÁÒ·Ò§ pm ä´éàŹФÃѺ

Êèǹà©Åºҧ¢éÍ ¨ÐµÒÁÁÒ àÃçÇæ¹Õé¤ÃѺ
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #41  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 02:03
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Default

¼Á·Óà©Åºҧ¢éÍ·ÕèÍÂÒ¡ªÕéᨧà¾ÔèÁàµÔÁäÇé·Õè¹Õè à¾×èͨÐä´é»ÃÐËÂÑ´à¹×éÍ·Õè¡ÃзÙé

áµè¢Í ´Ö§à©¾ÒÐ 2 ¢é͹ÕéÍÍ¡ÁÒâªÇìãËé´Ù à¾ÃÒÐàËç¹ÇèÒ¹èÒʹ㨴դÃѺ
ÃÙ»ÀÒ¾·ÕèṺÁÒ´éÇÂ
 
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #42  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 08:56
Timestopper_STG's Avatar
Timestopper_STG Timestopper_STG äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³¤ØéÁ¤ÃͧÃèÒ§
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 22 Á¡ÃÒ¤Á 2006
¢éͤÇÒÁ: 256
Timestopper_STG is on a distinguished road
Send a message via MSN to Timestopper_STG
Default

5.2.(Part1)
$\displaystyle{\lim_{n\rightarrow\infty}\frac{H(n)}{n+1}=\lim_{n\rightarrow\infty}\frac{\ln n+\gamma}{n+1}=\lim_{n\rightarrow\infty}\frac{1}{n}=0}$
Note that Euler–Mascheroni constant(gamma) $\displaystyle{\gamma=\lim_{n\rightarrow\infty}\left[H(n)-\ln n\right]}$
¢éÍ5.3¼Áá¡éŧä»ã¹¤ÇÒÁ¤Ô´àËç¹¹Ñé¹áÅéǹФÃѺ
áµè¼Áà¢éÒã¨ÇèÒÁѹÂѧ¼Ô´ÍÂÙèà¾ÃÒÐÇèÒIntegrand¢Í§$\displaystyle{I_{3}}$ÁÕàù¨ìà»ç¹ÅºµÅÍ´ªèǧ$(0,1)$
áµè¼Á¡ÅѺËÒä´éà»ç¹ºÇ¡Ãº¡Ç¹¾Õèpasser-byµÃǨà»ç¹¤ÃÑé§ÊØ´·éÒ´éǤÃѺ
ÅСç¢éÍ3.2ÍФÃѺ¼Á¤Ô´ÇèҨӹǹµÑé§áµè$\displaystyle{10^{k}}$¶Ö§$\displaystyle{10^{k+1}-1}$ÁÕ$\displaystyle{9\times 10^{k}}$¹Ð¤ÃѺäÁèãªè$\displaystyle{8\times 9^{k}}$
__________________
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x-b\sin x}{a\sin x+b\cos x}dx=\ln\left(\frac{a}{b}\right)$$
BUT
$$\int_{0}^{\frac{\pi}{2}}\frac{a\cos x+b\sin x}{a\sin x+b\cos x}dx=\frac{\pi ab}{a^{2}+b^{2}}+\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\ln\left(\frac{a}{b}\right)$$

01 ¸Ñ¹ÇÒ¤Á 2007 20:42 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 3 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ passer-by
à˵ؼÅ: á¡é definition ¢Í§ Euler's constant
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #43  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 16:59
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Default

ÍéÒ§ÍÔ§:
¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ Timestopper_STG View Post
$\displaystyle{I_{3}=\int_{0}^{1}\frac{\ln(1-x)\ln(1+x)}{x^{2}}dx=\int_{0}^{1}\frac{-\ln(1+x)}{x}dx-\sum_{k=2}^{\infty}\left[\left[\frac{x^{k-1}}{k(k-1)}\ln(1+x)\right]_{0}^{1}-\int_{0}^{1}\frac{x^{k-1}}{k(k-1)(1+x)}dx\right]}$
$\displaystyle{I_{3}=\frac{-\pi^{2}}{12}-\ln 2+\sum_{k=2}^{\infty}\left[\int_{0}^{1}\left[\frac{x^{k-1}}{k-1}-\frac{x^{k-1}}{k}\right]\frac{dx}{1+x}\right]=\frac{-\pi^{2}}{12}-2\int_{0}^{1}\frac{\ln(1-x)}{1+x}+\int_{0}^{1}\frac{\ln(1-x)}{x}dx}$
$\displaystyle{I_{3}=\frac{-\pi^{2}}{12}-2\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k2^{k}}ue^{-ku}\right]_{0}^{\infty}+\frac{1}{k2^{k}}\int_{0}^{\infty}e^{-ku}du\right]+\sum_{k=1}^{\infty}\left[\left[-\frac{1}{k}ue^{-ku}\right]_{0}^{\infty}+\frac{1}{k}\int_{0}^{\infty}e^{-ku}du\right]}$
$\displaystyle{I_{3}=\frac{-\pi^{2}}{12}+2S(0.5)-\sum_{k=1}^{\infty}\frac{1}{k^{2}}=-\frac{\pi^{2}}{12}-\ln^{2}2}$
¼Áquote ÁÒá¡é䢵ç $ I_3$ãËéáÅéǹФÃѺ

Êèǹ·Õè¾ÔÊÙ¨¹ì converge à¢éÒËÒ 0 ¡ç¶Ù¡áÅéǤÃѺ à¾Õ§áµèÁѹËÁ´àÇÅÒ ¡çàÅÂäÁèÃÇÁ¤Ðá¹¹ãËé¹Ð¤ÃѺ

ÊÓËÃѺ·Õè·éǧÁÒà¡ÕèÂǡѺ¢éÍ 3.2

¨ÃÔ§æáÅéÇ $ 8 \cdot 9^{k-1} $ ¤×ÍàÅ¢ k ËÅÑ¡ ·ÕèäÁèÁÕ 7 ÃÇÁÍÂÙè㹨ӹǹ (äÁèä´éËÁÒ¤ÇÒÁÇèÒ àÅ¢ k ËÅÑ¡·Ñé§ËÁ´)

Åͧàªç¤¨Ò¡¡ÒùѺ¡çä´é¤ÃѺ àªè¹ àÅ¢ 2 ËÅÑ¡ÁÕ 90 ¨Ó¹Ç¹ ËÑ¡¨Ó¹Ç¹·ÕèÁÕ 7 ÍÍ¡ä» ( 17,27,...,67,70,71,...,79,87,97) ¡ç¨ÐàËÅ×Í 90-18 =72 ËÃ×Í 8*9

¶éÒÊѧࡵ´Õæ ¤ÇÒÁËÁÒÂὧ¢Í§¢éÍ 3.2 ¡ç¤×Í ¡Òà remove à·ÍÁÊèǹ˹Ö觢ͧ harmonic series ÍÍ¡ä» à¾×èÍ·ÓãËé series ·ÕèàËÅ×Í convergent ¹Ñè¹àͧ¤ÃѺ

·éÒ·ÕèÊØ´ µéͧ¢Íº¤Ø³ ¹éͧæ·Ñé§ 3 ·èÒ¹ ·ÕèÊÅÐàÇÅÒÁÒ jam ã¹â¤Ã§¡Òà 3 ¤ÃѺ
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ

01 ¸Ñ¹ÇÒ¤Á 2007 17:01 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ passer-by
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #44  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 19:44
M@gpie's Avatar
M@gpie M@gpie äÁèÍÂÙèã¹Ãкº
ÅÁ»ÃÒ³äÃéÊÀÒ¾
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 09 µØÅÒ¤Á 2003
¢éͤÇÒÁ: 1,227
M@gpie is on a distinguished road
Default

äÁèÁÕ¤ÇÒÁàË繤ÃѺ¹Í¡¨Ò¡ ¨ÐºÍ¡ÇèÒ â¨·ÂìÍÖ´¶Ö¡ÁËÒ¡ÒÌÁÒ¡àŤÃѺ¾Õè passer-by
__________________
PaTa PatA pAtA Pon!
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
  #45  
Old 01 ¸Ñ¹ÇÒ¤Á 2007, 20:51
passer-by passer-by äÁèÍÂÙèã¹Ãкº
¼Ùé¾Ô·Ñ¡Éì¡®·ÑèÇä»
 
Çѹ·ÕèÊÁѤÃÊÁÒªÔ¡: 11 àÁÉÒ¹ 2005
¢éͤÇÒÁ: 1,442
passer-by is on a distinguished road
Default

ÍéÒ§ÍÔ§:
¢éͤÇÒÁà´ÔÁà¢Õ¹â´Â¤Ø³ M@gpie View Post
äÁèÁÕ¤ÇÒÁàË繤ÃѺ¹Í¡¨Ò¡ ¨ÐºÍ¡ÇèÒ â¨·ÂìÍÖ´¶Ö¡ÁËÒ¡ÒÌÁÒ¡àŤÃѺ¾Õè passer-by
Áѹ¡ç੾ÒТéÍ·Õèà»ç¹ series à·èÒ¹Ñé¹áËÅФÃѺ

ºÒ§¢éÍ ¡ç¡ÓÅѧ¨Ðŧ Maths magazine ã¹µèÒ§»ÃÐà·È¾Í´Õ áµèä»áͺ¢âÁÂÁÒãËé·Ó¡è͹

ÃÙéÊÖ¡ ¼Á¨ÐÅ×Áà©Å¢éÍ 4.2 µÍ¹·Õè 1 ¤ÓµÍº¤×Í Schroder-Bernstein ¤ÃѺ «Öè§ã¤ÃàÃÕ¹ Set theory ÁÒáÅéǨÐÃÙé¨Ñ¡´Õ

àÅèÁ·Õè¼ÁàÍÒÁÒµÑé§â¨·Âì¢éÍ 4 µÍ¹·Õè 1 à»ç¹Ë¹Ñ§Ê×Í·Õè¹èÒʹã¨ÁÒ¡¤ÃѺ äÇéÇèÒ§æ¨Ð ¶èÒÂàÍ¡ÊÒà áÅéÇÁÒᨡ¿ÃÕæẺäÁèµéͧÃèÇÁʹءÍÐäÃàÅ ã¹âÍ¡ÒÊ˹éÒáÅéǡѹ¤ÃѺ
__________________
à¡ÉÕ³µÑÇàͧ »ÅÒÂÁԶعÒ¹ 2557 áµè¨Ð¡ÅѺÁÒà»ç¹¤ÃÑ駤ÃÒÇ
µÍº¾ÃéÍÁÍéÒ§ÍÔ§¢éͤÇÒÁ¹Õé
µÑé§ËÑÇ¢éÍãËÁè Reply


ËÑÇ¢éͤÅéÒ¤ÅÖ§¡Ñ¹
ËÑÇ¢éÍ ¼ÙéµÑé§ËÑÇ¢éÍ Ëéͧ ¤ÓµÍº ¢éͤÇÒÁÅèÒÊØ´
¢éÍÊͺ¤Ñ´µÑÇ Olympiad ÊÊÇ·. 2545 ToT ¢éÍÊͺâÍÅÔÁ»Ô¡ 33 28 ¾ÄȨԡÒ¹ 2007 18:04
Vietnam Mathematical Olympiad 2005 problem 4 gools ¢éÍÊͺâÍÅÔÁ»Ô¡ 8 18 ÁԶعÒ¹ 2005 21:09
The First POSN-Mathematical Olympiad Rovers ¢èÒǤÃÒÇáǴǧ Á.»ÅÒ 4 06 ¾ÄÉÀÒ¤Á 2005 09:55
The First POSN-Mathematical Olympiad Rovers »Ñ­ËÒ¤³ÔµÈÒʵÃì·ÑèÇä» 1 24 àÁÉÒ¹ 2005 02:12
British Mathematical Olympiad Tony »Ñ­ËÒ¤³ÔµÈÒʵÃì·ÑèÇä» 14 15 àÁÉÒ¹ 2005 08:59


¡®¡ÒÃÊ觢éͤÇÒÁ
¤Ø³ äÁèÊÒÁÒö µÑé§ËÑÇ¢éÍãËÁèä´é
¤Ø³ äÁèÊÒÁÒö µÍºËÑÇ¢éÍä´é
¤Ø³ äÁèÊÒÁÒö Ṻä¿ÅìáÅÐàÍ¡ÊÒÃä´é
¤Ø³ äÁèÊÒÁÒö á¡é䢢éͤÇÒÁ¢Í§¤Ø³àͧä´é

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
·Ò§ÅÑ´ÊÙèËéͧ


àÇÅÒ·ÕèáÊ´§·Ñé§ËÁ´ à»ç¹àÇÅÒ·Õè»ÃÐà·Èä·Â (GMT +7) ¢³Ð¹Õéà»ç¹àÇÅÒ 06:08


Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha