PDA

View Full Version : ÊÍǹ


»Ò¡¡Òà«Õ¹
13 ¡Ñ¹ÂÒ¹ 2011, 17:57
$f(x) = x\bigwedge 5/(5x\bigwedge 4-10x\bigwedge 3+10x\bigwedge 2-5x+1)
¶éÒ x_i=i/2009 àÁ×èÍ i = 1-2009 ¨§ËÒ \Sigma f(x_i) $

Amankris
13 ¡Ñ¹ÂÒ¹ 2011, 19:03
ã¤Ã¡çä´éªèÇÂá»Å˹èÍÂ

ËÂÔ¹ËÂÒ§
13 ¡Ñ¹ÂÒ¹ 2011, 19:26
¶éҨѺ㨤ÇÒÁäÁè¼Ô´ »Ò¡¡Òà«Õ¹¨ÐºÍ¡ÇèÒàÍÒ⨷ÂìàâҤ³ÔµÁÒ¨Ò¡ (ÊѺʹÍÅǹ) ¤ÃѺ :)

PP_nine
13 ¡Ñ¹ÂÒ¹ 2011, 22:35
f(x) = x\bigwedge 5/(5x\bigwedge 4-10x\bigwedge 3+10x\bigwedge 2-5x+1)
¶éÒ x_i=i/2009 àÁ×èÍ i = 1-2009 ¨§ËÒ \Sigma f(x_i)

¹èÒ¨ÐËÁÒ¶֧¢éÍÊͺ ÊÍǹ »Õ 52 ·Õè¶ÒÁÇèÒ ¶éÒ¡Ó˹´ $$f(x)=\frac{x^5}{5x^4-10x^3+10x^2-5x+1}$$ áÅÐ $x_i=\frac{i}{2009}$ ÊÓËÃѺ $i=1,2,...,2009$ ¨§ËÒ¤èÒ $$\sum_{i = 1}^{2009} f(x_i)$$
¢é͹Õé¡çÊѧࡵÇèÒ $$f(x)=\frac{x^5}{x^5-(x-1)^5}=\frac{x^5}{x^5+(1-x)^5}$$
¨Ö§ä´éÇèÒ $f(x)+f(1-x)=1$ µèͨҡ¹Õé¡çäÁèÂÒ¡áÅéÇ Åͧ¨Ñº¤Ùè´Ù (ÍÂèÒÅ×Á $f(x_{2009})=1$)

ÇèÒáµè·ÓäÁèÁÒâ¼Åè㹺ÍÃì´àâҤ³ÔµÅèÐà¹Õè :wacko: