PDA

View Full Version : µéͧ¡ÒÃ⨷ÂìµÃÕ⡳


now
10 ¸Ñ¹ÇÒ¤Á 2005, 14:51
µéͧ¡ÒÃ⨷ÂìµÃÕ⡳ÁÔµÔ¤èРẺ§èÒÂæ¹Ð

Mastermander
11 ¸Ñ¹ÇÒ¤Á 2005, 01:26
¨§ËÒ¤èҢͧ
1.sin 15[:degree]
2.sin 75[:degree]
3.sin([:alpha]+[:beta]) = K áÅéÇ cos2([:alpha]+[:beta]) à·èҡѺà·èÒäÃ
4.sin 3[:eta]/sin [:eta] - cos 3[:eta]/cos [:eta] = ?

Tony
14 ¸Ñ¹ÇÒ¤Á 2005, 22:18
àÍÒà»ç¹µÃСÙÅ ¾ÔÊÙ¨¹ì A+B+C=180 àŹФÃѺ

¶éÒ A+B+C=180 ¨§¾ÔÊÙ¨¹ìÇèÒ (¢éÍ 5-20)
5. \sin2A\ -\ \sin2B\ +\ \sin2C\ =\ 4\cos A \sin B \cos C
6. \sin2A\ -\ \sin2B\ -\ \sin2C\ =\ -4\sin A\cos B \cos C
7. \sin A\ +\ \sin B\ +\ \sin C\ =\ 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}
8. \sin A\ +\ \sin B\ -\ \sin C\ =\ 4\sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}
9. \cos A\ -\ \cos B\ +\ \cos C\ =\ 4\cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} -1
10. \frac{ \sin B + \sin C - \sin A}{\sin A + \sin B + \sin C}\ =\ \tan \frac{B}{2} \tan \frac{C}{2}
11. \tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}+\tan \frac{A}{2} \tan \frac{B}{2}\ =\ 1
12. \frac{1+\cos A - \cos B+ \cos C}{1+ \cos A + \cos B - \cos C}\ =\ \tan \frac{B}{2} \cot \frac{C}{2}
13. \cos 2A + \cos 2B + \cos 2C + 4\cos A \cos B \cos C + 1\ =\ 0
14. \cot B \cot C + \cot C \cot A + \cot A \cot B\ =\ 1
15. (\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)\ =\ \csc A \csc B \csc C
16. \cos^{2} 2A +\cos^{2} 2B + \cos^{2} 2C = 1+2\cos 2A \cos 2B \cos 2C
17. \sin ^{2} \frac{A}{2} + \sin ^{2} \frac{B}{2} + \sin ^{2} \frac {C}{2}\ =\ 1-2\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
18. \cos ^{2} 2A +\cos ^ {2} 2B +\cos ^{2} 2C\ =\ 1+2\cos 2A \cos 2B \cos 2C
19. \frac{\cot B + \cot C}{\tan B + \tan C}+\frac{\cot C +\cot A}{\tan C + \tan A} + \frac{\cot A + \cot B}{\tan A + \tan B} = 1
20. \frac{\tan A + \tan B + \tan C}{(\sin A + \sin B + \sin C)^{2}}\ =\ \frac{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}{2\cos A \cos B \cos C}

gon
14 ¸Ñ¹ÇÒ¤Á 2005, 23:37
µÃÕ⡳ÃдѺ Á.ä˹¤ÃѺ µé¹ ËÃ×Í »ÅÒÂ. ;)

Tony
15 ¸Ñ¹ÇÒ¤Á 2005, 16:10
ÂѧÅͧ·ÓäÁèËÁ´¤ÃѺ :) ¹èÒ¨Ðà»ç¹ÃдѺÁ.»ÅÒ¤ÃѺ à¾ÃÒТéÍ 7. ¡Ñº 8. ¡çãªéàÍ¡ÅѡɳìµÃÕ⡳¼ÅºÇ¡¢Í§ sin ¡Ñº cos :D