#1
|
||||
|
||||
͹ءÃÁÅÙèÍÍ¡
ÊÁÁµÔãËé $(a_n)_n$ à»ç¹ÅӴѺ¢Í§¨Ó¹Ç¹¨ÃÔ§ºÇ¡ «Öè§ $$\sum_{n=1}^\infty a_n = \infty, \lim_{n \rightarrow \infty} a_n = 0$$ áÅéÇÊÓËÃѺ·Ø¡¨Ó¹Ç¹¨ÃÔ§ºÇ¡ $a$ ã´æ ¨ÐÁÕÅӴѺÂèÍ $(a_{n_k})$ «Öè§ $$\sum_{k=1}^\infty a_{n_k} = a.$$
¼ÁÃÙéÊÖ¡à¢éÒ㨵ÑÇ·Äɮպ·¹Ð¤ÃѺ àËÁ×͹ÇèÒµÑÇ $a_n$ ÁѹàÅç¡ÁÒ¡ áµè¶éҨѺÃÇÁ¡Ñ¹Áѹ¡çãËèÁÒ¡æ´éÇ á¹Ç¤Ô´¡ÒþÔÊÙ¨¹ì¹èÒ¨ÐẺÇèÒ ¾ÂÒÂÒÁ sum $a_n$ ãËéã¡Åé $a$ ÁÒ¡·ÕèÊØ´ áÅéÇãªéà·ÍÁàÅ硢ͧ $a_n$ µÍ¹»ÅÒÂæ à¢éÒ仺ǡà¾ÔèÁ¨¹¼ÅÃÇÁÅÙèà¢éÒËÒ a ·Õè¤Ô´äÇé¤×Í ¨Ð¾ÂÒÂÒÁËÒ finite sum ¢Í§ $a_n$ ãËéã¡Åéæ $a$ áÅéǨÐËÒà·ÍÁ»ÅÒ¢ͧ $a_n$ «Ö觹éÍ¡ÇèҾǡ $\frac{1}{2^n}$ à¾×èÍãËé¼ÅÃÇÁàÅç¡ áÅкǡ¡Ñ¹ã¡Åé $a$ ¾Í´Õ áµèà¢Õ¹¾ÔÊÙ¨¹ìäÁèä´é¤ÃѺ ´ÙáÅéÇà´ÒÇèÒ¤ÅéÒ Riemann rearrangement for condotional serie áµè¡çäÁèàËÁ×͹ Åͧ¾ÂÒÂÒÁ¤Ô´áÅéÇáµèÁѹäÁèÍÍ¡¤ÃѺ ú¡Ç¹ªèÇ´éǤÃѺ ¢Íº¤Ø³¤ÃѺ
__________________
àÃ×èÍÂæ à©×èÍÂæ 03 µØÅÒ¤Á 2016 04:54 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 6 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ B º .... |
#2
|
||||
|
||||
àª×èÍÇèÒãªé¤ÇÒÁÃÙéá¤è¹ÔÂÒÁ¢Í§ÅÔÁÔµ·Óä´é¹Ð
ÊÔ觷Õè¤Ø³µéͧ·Ó¤×Íá¤è·Ó¤ÇÒÁ¤Ô´¢Í§¤Ø³ãËéà»ç¹ÃÙ»¸ÃÃÁ Åͧ¤Ô´´Ù´ÕæÇèÒÊÔ觷Õè¤Ø³µéͧ¾ÔÊÙ¨¹ìÁÕÍÐäúéÒ§ (1) ¹ÔÂÒÁ algorithm ¢Í§¡ÒÃÊÃéÒ§ÅӴѺ¢Í§ $n_k$ ·Õè¤Ø³¤Ô´ÇèÒãªéä´é¢Öé¹ÁÒ (2) ¾ÔÊÙ¨¹ìÇèÒÅӴѺ¹Ñé¹ÊÍ´¤Åéͧ¡Ñº¢éͤÇÒÁ for large enough $M$ and for any $e>0$, $\displaystyle a-\sum_{k=1}^M a_{n_k}<e$ ÊÔ觷ÕèÍÒ¨¨ÐªèǤس㹡ÒþÔÊÙ¨¹ìÁÕ (1) $\displaystyle \sum_{k=m}^\infty a_k=\infty$ (2) for large enough $n$ and for any $e>0$, $a_n<e$
__________________
----/---~Alice~ ¨§ÃѺÃÙéäÇé ª×èÍáËè§ÊÕÊѹ˹Öè§à´ÕÂÇ·ÕèáÊ´§¼Å ---/---- ~Blue~ ¹Õè¤×Í ÊÕáË觤ÇÒÁËÅѧÍѹ¡ÇéÒ§ãËè¢Í§àÇ纺ÍÃì´¹Õé |
#3
|
||||
|
||||
ãºé¡ÒÃÊÃéÒ§ÅӴѺÂèÍÂãËéÍÕ¡«Ñ¡¹Ô´ä´éÁÑé¤ÃѺ ãªé infremum ÁÑé¤ÃѺ Ẻ
Since $a_n \rightarrow 0$, there exists $i$ such that $a_i < a$. Choose $a_{n_1}$ such that $a_{n_1} < a , a - a_{n_1} < a - a_j$ for any $j$ with $a_j < a$. Since $a_{n_1} < a$, choose $n_2 > n_1$ such that $a_{n_2} < a - a_{n_1}$ and $ (a - a_{n_1}) - a_{n_2} < (a - a_{n_1}) - a_j$ for any $j > n_1$ and $a_j < (a - a_{n_1})$. Repeat the process. Get $(a_{n_k})$ that each $a_k$ is the best closed to $a - \sum_{i=1}^{k-1} a_{n_i}$. áµèÁѹ¹èҨеéͧàÅ×Í¡ãËé¢Ö鹡Ѻ $\epsilon$ à¾ÃÒÐ äÁè§Ñé¹äÁèÃÙé¨ÐáÊ´§Âѧä§ÇèÒÅӴѺÂèÍÂÅÙèà¢éÒÊÙè $a$ ¨ÃÔ§ á¹Ð¹Ó¡ÒÃÊÃéÒ§ÅӴѺ˹èͤÃѺ
__________________
àÃ×èÍÂæ à©×èÍÂæ 05 µØÅÒ¤Á 2016 09:18 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 5 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ B º .... |
#4
|
||||
|
||||
à¢Õ¹ÍÍ¡ÁÒà»ç¹ algorithm ´ÕæÊÔ¤ÃѺ ÍÂèÒ§ÇԸբͧ¤Ø³ÊÒÁÒöà¢Õ¹ä´é´Ñ§¹Õé
1. àÅ×Í¡ $n_1$ à»ç¹¨Ó¹Ç¹·Õè¹éÍ·ÕèÊØ´ «Öè§ $a_{n_1} < a$ (àÅ×Í¡ä´éà¾ÃÒÐ $\displaystyle \lim_{n \rightarrow \infty} a_n = 0$) 2. ¶éÒÁÕ $n_1,n_2,...,n_k$ áÅéÇ«Öè§ $\displaystyle \sum_{i=1}^k a_{n_i} < a$ ¨ÐàÅ×Í¡ $n_{k+1}$ à»ç¹¨Ó¹Ç¹·Õè¹éÍ·ÕèÊØ´ÁÒ¡¡ÇèÒ $n_k$ áÅÐ $\displaystyle \sum_{i=1}^k a_{n_i}+a_{n_{k+1}}<a$ (àÅ×Í¡ä´éÍÕ¡à¾ÃÒÐ $\displaystyle \lim_{n \rightarrow \infty} a_n = 0$ àªè¹¡Ñ¹) algorithm ¹Õéà»ç¹ algorithm ·Õè¶Ù¡µéͧáÅéǤÃѺ áµèÊѧࡵÇèÒÂѧäÁèä´éãªéÍÕ¡¢éÍÁÙÅ˹Öè§àÅ ($\displaystyle \sum_{i=m}^\infty a_i=\infty$) ¤ÃÒǹÕé¢Ñ鹵͹µèÍ仨ÐàÍÒÁÒàª×èÍÁ¡Ñº $\epsilon$ Âѧ䧤ÃѺ Åͧ¤Ô´àͧ¡è͹áÅéǤèÍÂà»Ô´ hint ¡çä´é¤ÃѺ 1. $\displaystyle \sum_{i=m}^\infty a_i=\infty$ à»ç¹¡Òú͡ÇèÒÁÕ $M$ äÁè¨Ó¡Ñ´¨Ó¹Ç¹«Öè§ $M$ äÁèÍÂÙèã¹ÅӴѺ $n_k$ (Åͧ¾ÔÊÙ¨¹ì´Ù¤ÃѺ) 2. ´Ñ§¹Ñé¹ for large enough $M$, $a_M < \epsilon$ à»ç¹¡ÒÃàª×èÍÁ⧡Ѻ $\epsilon$ ¤ÃѺ
__________________
----/---~Alice~ ¨§ÃѺÃÙéäÇé ª×èÍáËè§ÊÕÊѹ˹Öè§à´ÕÂÇ·ÕèáÊ´§¼Å ---/---- ~Blue~ ¹Õè¤×Í ÊÕáË觤ÇÒÁËÅѧÍѹ¡ÇéÒ§ãËè¢Í§àÇ纺ÍÃì´¹Õé 05 µØÅÒ¤Á 2016 16:02 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ Thgx0312555 |
#5
|
|||
|
|||
àÍÒẺãªé ·º.à«çµ ÃÖà»ÅèÒ ! ¡ÅØèÁ¢Í§ÊÁÒªÔ¡·ÕèÁÕà§×è͹䢴ѧ¹Õé ! »ÃСͺ´éÇ áÅÐ ææææ
ËÒÍèҹ˹ѧÊ×Í Set Theory áµèÍÒ¨¨ÐËÒÂÒ¡¹Ô´¹Ö§¹Ð¤ÃѺ |
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ | ¤é¹ËÒã¹ËÑÇ¢é͹Õé |
|
|