#1
|
||||
|
||||
Test ͹ءÃÁ¤ÃѺ
1) $\sum_{n = 2}^{\infty} \frac{1}{n ln n} $
2) $\sum_{n = 1}^{\infty} \frac{n ln n}{(n+1)^4} $ ¤Ô´ÍÍ¡áµè integral test ÁÕÇÔ¸Õ§èÒ¡ÇèÒ¹ÕéÁÑé¤ÃѺ
__________________
28 ¡ØÁÀҾѹ¸ì 2016 02:32 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 3 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ ¤usÑ¡¤³Ôm |
#2
|
||||
|
||||
2. àÅ×Í¡ $b_n=\frac{n}{(n+1)^{2.5}}$
¨Ðä´é sum bn ÅÙèà¢éÒ ËÒÅÔÁÔµ an/bn ¨Ðä´é0 ´Ñ§¹Ñé¹ sum an ÅÙèà¢éÒ ¢ÍÍÀÑÂäÁèÊдǡ¾ÔÁ¾ì latex 28 ¡ØÁÀҾѹ¸ì 2016 19:33 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 2 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ polsk133 |
#3
|
||||
|
||||
¢Íº¤Ø³¤ÃéÒººº
__________________
|
#4
|
|||
|
|||
2. $\dfrac{n\ln n}{(n+1)^4}\leq \dfrac{1}{n^2}$
__________________
site:mathcenter.net ¤Ó¤é¹ |
#5
|
|||
|
|||
¢éÍ 1 ÅͧÃÇÁ¾¨¹ì¤ÃÑé§ÅÐ $2^n$ ¾¨¹ì´Ù¤ÃѺ
|
#6
|
|||
|
|||
ÃÇÁÂѧä§àËÃͤÃѺ ÍÂÒ¡ÃÙéÁÒ¡à¾ÃÒеÑǹÕé¶éÒäÁèãªé integral test ¨ÐÂÒ¡ÁÒ¡
__________________
site:mathcenter.net ¤Ó¤é¹ |
#7
|
|||
|
|||
¼Á·ÓÍÂèÒ§¹Õé¤ÃѺ $$\sum_{r=2^n+1}^{2^{n+1}}\frac{1}{r\log r}\geq \frac{2^n}{2^{n+1}\log 2^{n+1}}=\frac{1}{2(\log 2)(n+1)}$$
´Ñ§¹Ñé¹ $$\sum_{n=2}^{\infty}\frac{1}{n\log n}=\sum_{n=1}^{\infty}\sum_{r=2^n+1}^{2^{n+1}}\frac{1}{r\log r}\geq\sum_{n=1}^{\infty}\frac{1}{2(\log 2)(n+1)}$$ «Öè§àËç¹ä´éªÑ´ÇèÒÅÙèÍÍ¡¤ÃѺ |
#8
|
|||
|
|||
ÍÖÁ ÇÔ¸Õ¤Ô´àËÁ×͹¾Ç¡µÓÃÒâÍÅÔÁ»Ô¤ÇÔªÒ¡Òà àŤÃѺ à¨ÍÃÙ»ÊÁ¡Òà äÁèÁÕÀÒ¾¨Ð§§ ÎèÒæ
¹Ñº¡ÒÃà¢éÒ¤Ù褹à»ç¹Ç§¡ÅÁ ËÃ×Í áºè§à«¡ªÑ蹢ͧǧ¡ÅÁ ¤ÃѺ |
ËÑÇ¢éͤÅéÒ¤ÅÖ§¡Ñ¹ | ||||
ËÑÇ¢éÍ | ¼ÙéµÑé§ËÑÇ¢éÍ | Ëéͧ | ¤ÓµÍº | ¢éͤÇÒÁÅèÒÊØ´ |
Top Test | ¨Ù¡Ñ´àËÅÕ§ | ¢éÍÊͺã¹âçàÃÕ¹ Á.»ÅÒ | 8 | 30 ÊÔ§ËÒ¤Á 2012 16:23 |
¢éÍÊͺ PRE-TEST P6 | ¤usÑ¡¤³Ôm | ¢éÍÊͺã¹âçàÃÕ¹ »ÃжÁ»ÅÒ | 19 | 20 ¡Ñ¹ÂÒ¹ 2009 16:57 |
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ | ¤é¹ËÒã¹ËÑÇ¢é͹Õé |
|
|