|
สมัครสมาชิก | คู่มือการใช้ | รายชื่อสมาชิก | ปฏิทิน | ค้นหา | ข้อความวันนี้ | ทำเครื่องหมายอ่านทุกห้องแล้ว |
|
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
#1
|
|||
|
|||
ผม Integrate ข้อนี้ไม่ได้
1.อยากทราบว่า x^x เมื่อ integrate แล้ว จะได้อะไรครับ
(ผมลอง diff ดูแล้ว ได้ (x^x)(1+ln(x)) ผมก็เลยมา คิดดูว่าถ้ามัน diff ได้ มันก็น่าจะ integrate ได้) 2. จำเป็นหรือไม่ที่ ฟังก์ชันใดที่หาอนุพันธ์ได้ ย่อม หาปฏิยานุพันธ์ได้ด้วย (เช่นข้อแรก) |
#2
|
|||
|
|||
ตั้งแต่เรียนมายังไม่เคยเจอนะครับ.
คิดว่าน่าจะเป็นรูปแบบที่อินทิเกรตไม่ได้ ผมอาจจะรู้น้อยก็ได้เพราะเรียนcalมาแค่ 3 ตัว |
#3
|
|||
|
|||
แล้วถ้าใส่ ln เข้าจะได้หรือเปล่า เพราะมันจะได้
x ln x แล้วก็ใช้ by part อินทิเกรต แต่มันจะมีปัญหาคือ จะต้องใส่ ln ทั้งสองข้าง ถ้าเป็นอย่างนั้นแล้วจะใส่ได้ยังไง |
#4
|
|||
|
|||
ง่ายมาก
y=x^x ln y = x ln x diff() 1/y dy = ( x/x + ln x ) dx dy/dx = dx^x /dx = y*(1+ln x) d(x^x)/dx = x^x*(1+ln x) <==== |
#5
|
|||
|
|||
คุณ KS คงจะเข้าใจผิดนะครับ ประเด็นนี้เขาไม่ได้ให้ diff x^x แต่เขาให้อินทิเกรต ผมลองดูวิธีของคุณ Darm แล้ว ปัญหาที่เกิดขึ้นคงจะเป็นเพราะตัวสมการที่มาจาก
y = x^x พอใส่ ln ทั้งสองข้างจะได้ ln y = ln x^x ln y = x ln x แต่พออินทิเกรตทั้งสองข้างแล้วมันก็จะเป็น ln y dx = x ln x dx (เครื่องหมายอินทิกรัลขอละเอาไว้) ตัว x ln x dx เวลาอินทิเกรตไม่น่ามีปัญหา แต่ ln y dx จะอินทิเกรตไม่ได้นี้แหละ ปัญหา แล้วผมก็ทำไม่เป็นด้วย |
#6
|
|||
|
|||
ผมเพิ่งนึกออกอีกแบบนึง แต่ไม่รู้ว่าถูกหรือเปล่านะ
จาก ln y = x ln x จะได้ y = e^(x ln x) หลังจากนั้นเราก็อินทิเกรตแค่ e^(x ln x) เท่านั้น แต่ว่า สมการใหม่ที่ผมคิดได้(แบบมั่ว ๆ) มันจะตรงกับ x^x มั้ยผมก็ไม่รู้ ลองเทียบกราฟดูเอาเอง ถ้าออกมาเหมือนกันก็แสดงว่าน่าจะใช่ แต่อินทิเกรตออกมายังไงผมก็ไม่รู้ เพราะว่าถนัดแต่ให้แนวคิดแต่ทำไม่เป็น(ยังอ่อนหัด) ถ้ายังไงก็ขอช่วย webmaster ช่วยทำให้ก็แล้วกันนะ |
#7
|
|||
|
|||
ดูผิดครับ
คือ นิยามของ integral คือ พื้้นที่ ใต้กราฟ ในกรณึ x^x จะำเป็น open-unbounded จะไม่มี Explicit integral |
#8
|
|||
|
|||
ผมลองใช้ Mathemetica แล้ว มันก็ไม่ให้คำตอบออกมา สงสัยจะทำไม่ได้จริงๆ (แต่มันมีพื้นที่จริงๆนะ)
|
#9
|
|||
|
|||
ถ้าเกิดว่ามีพื้นที่อยู่จริงงั้นก็น่าจะอินทิเกรตได้ใช่มั้ย โจทย์ x^x จะอินทิเกรตได้หรือไม่คงไม่อยากสนแล้วแหละ (ตอบมาเยอะแล้ว ไม่ลงเอยซักที) แต่คราวนี้ผมสนผลที่เกิดจากการ diff ของ x^x นั่นก็คือ
x^x(1+ln x) มันน่าจะอินทิเกรตได้ x^x ใช่มั้ย แต่ว่าแค่ x^x ก็มีปัญหาซะแล้ว ใช้ by-part คงหมดหวัง |
#10
|
||||
|
||||
มีอัลกอริทึมของนักคณิตศาสตร์ที่ชื่อ Risch ที่ใช้ตรวจสอบว่า ฟังก์ชันต่อเนื่องประเภทใดที่สามารถหาค่าอินทิกรัลได้ ซึ่งจะสามารถเขียนได้ในรูปผลบวกของหรือการรวมกันของฟังก์ชันปฐมภูมิ( finite combination of elementary functions.) ฟังก์ชันปฐมภูมิก็อย่างเช่น ฟังก์ชันพหุนาม , ฟังก์ชันตรีโกณและอินเวอร์สของมัน , ฟังก์ชันเอกซ์โพเนนเชียลและอินเวอร์สของมัน เป็นต้น
มีฟังก์ชันหลายประเภท ซึ่งเป็นฟังก์ชันพิเศษ ที่ไม่สามารถหาค่าอินทิกรัล แล้วเขียนอยู่ในรูปผลรวมดังกล่าวได้ ซึ่งจะเรียกว่า elliptic functions ตัวอย่างเช่น error function, และ gamma function เป็นต้น error function เป็นฟังก์ชันที่เราใช้บ่อยที่สุดในวิชา ฟิสิกส์และสถิติ ซึ่งมันจะเขียนในรูปแบบของ [2/sqrt(pi)] * integral ของ 0 ถึง x [e ^ (-t ^ 2) ] dt ฟังก์ชัน x^x ก็เช่นกัน จัดอยู่ในพวกนี้ [ 10 เมษายน 2001: ข้อความนี้ถูกแก้ไขแล้วจากคุณ: gon ] |
#11
|
|||
|
|||
ถ้างั้นช่วยแสดงตรงนี้หน่อยครับว่า
Integrate x^x(1+ ln x) = x^x + c (อย่างที่คนอื่นๆ บอก x^x มัน diff ได้ x^x(1+ lnx) ผมเลยอยากรู้ว่าจะ integrate กลับได้ยังไง) |
#12
|
|||
|
|||
ก็ ทำกลับจากตอน diff สิครับ อย่างงี้
ให้ u = xlnx จะได้ du/dx = 1 + lnx ซึ่งทำให้ dx/du = 1 / (1 + lnx) ในพจน์ int[(x ^ x)(1 + lnx)dx] ก็เอา du/du คูณเข้าไป ได้ว่า int[(x ^ x)(1 + lnx)(1 / (1 + lnx))du] พจน์ (1 + lnx)(1 / (1 + lnx)) = 1 ดังนั้น int[(x ^ x)(1 + lnx)dx] = int[(x ^ x)du] จาก u = xlnx ได้ว่า e ^ u = x ^ x ดังนั้น int[(x ^ x)(1 + lnx)dx] = int[(e ^ u)du] ซึ่งเท่ากับ e ^ u หรือ x ^ x นั่นเอง |
#13
|
|||
|
|||
|
หัวข้อคล้ายคลึงกัน | ||||
หัวข้อ | ผู้ตั้งหัวข้อ | ห้อง | คำตอบ | ข้อความล่าสุด |
ตะลุยโจทย์ Integrate | Mastermander | ปัญหาคณิตศาสตร์ ม.ปลาย | 74 | 28 พฤษภาคม 2007 00:37 |
ช่วย integrate ให้หน่อยครับ | warut | ปัญหาคณิตศาสตร์ทั่วไป | 2 | 22 มีนาคม 2005 08:27 |
การ integrate | xbox | ปัญหาคณิตศาสตร์ทั่วไป | 1 | 04 ตุลาคม 2002 17:12 |
integrate | tana | ปัญหาคณิตศาสตร์ทั่วไป | 9 | 01 พฤศจิกายน 2001 22:39 |
สูตรลดทอนของ integrate (sec x)^n | xlover13 | ปัญหาคณิตศาสตร์ทั่วไป | 1 | 08 มิถุนายน 2001 09:25 |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|