|
ÊÁѤÃÊÁÒªÔ¡ | ¤ÙèÁ×Í¡ÒÃãªé | ÃÒª×èÍÊÁÒªÔ¡ | »¯Ô·Ô¹ | ¤é¹ËÒ | ¢éͤÇÒÁÇѹ¹Õé | ·Óà¤Ã×èͧËÁÒÂÍèÒ¹·Ø¡ËéͧáÅéÇ |
|
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ | ¤é¹ËÒã¹ËÑÇ¢é͹Õé |
#76
|
||||
|
||||
#75 ¢éÍ 5 ÇÔ¸Õ·Ó, ¤ÓµÍºàËÁ×͹¼ÁàÅÂ
áµè¨ÐÍéÒ§ $m-3|100$ µéͧ¾ÔÊÙ¨¹ìÍÕ¡·Õ¹Ð¤ÃѺ à¾ÃÒÐÊèǹ¹ÕéÍÂÙèã¹à¹×éÍËҢͧ order «Öè§à¡Ô¹¤èÒ 2 令ÃѺ
__________________
keep your way.
|
#77
|
||||
|
||||
áÅéǾÔÊÙ¨¹ìÂѧä§ËÃͤÃѺÍѹ¹Õé ·ÕèÇèÒ $ord \mid \phi (n)$
|
#78
|
||||
|
||||
¼Á¡çäÁèá¹èã¨àËÁ×͹¡Ñ¹¹Ð¤ÃѺ
ãËé x à»ç¹ order ¢Í§ a modulo n áÅШҡ¤ÇÒÁ¨ÃÔ§·ÕèàÃÒÃÙéÇèÒ $\phi n \geq x$ ¹Ñ蹤×ͨÐÁÕ $xk= \phi n$ ÊÓËÃѺºÒ§ k $a^x \equiv 1 \pmod{n}$ $a^{xk} \equiv 1 \pmod{n}$ ºÒ§ $a_1$ «Öè§ $xk = \phi n$ |
#79
|
|||
|
|||
ÊÙéæ ¹Ð¤Ð à˹⨷ÂìÅÐÁÖ¹ ÎÒæææ
à¤Âà¢éÒ¤èÒâÍÅÔÁ»Ô¡ ¤³ÔÈÒʵÃì ¢Í§ÀÒ¤µÐÇѹÍÍ¡ËÅÒ»ÕÅÐ µÍ¹¹ÕéÅ×Á T.T
__________________
à´ÃÊ à´ÃÊÊÑé¹ à´ÃʹèÒÃÑ¡ à´ÃÊÍÍ¡§Ò¹ ªØ´à´ÃÊ ªØ´à´ÃÊÍÍ¡§Ò¹ Í͡ẺàÇçºä«µìÿ ·ÓàÇçºä«µì |
#80
|
||||
|
||||
#78 ÇÔ¸Õ·Ó´Ùá»Å¡æÍÂÙè¹Ð¤ÃѺ
ãËé $k=ord_na$ ¨ÐáÊ´§ÇèÒ $k| \phi (n)$ àÊÁÍÊÓËÃѺ¨Ó¹Ç¹àµçÁ $a$ ·Õè $(a,n)=1$ ¶éÒà¢Õ¹ $\phi (n) = q \cdot k + r$ â´Â·Õè $0 \le r < k$ áÅéÇ à¹×èͧ¨Ò¡ $(a,n)=1$ ´Ñ§¹Ñé¹ $a^{\phi (n)} \equiv 1 \pmod{n}$ $a^{kq+r} \equiv 1 \pmod{n}$ $a^r \equiv 1 \pmod{n}$ áµè¨Ó¹Ç¹àµçÁ $k$ à»ç¹¨Ó¹Ç¹àµçÁºÇ¡·Õè¹éÍ·ÕèÊØ´«Öè§ $a^k \equiv 1 \pmod{n}$ ã¹¢³Ð·Õè $0 \le r < k$ ´Ñ§¹Ñé¹ $r=0$ à¾Õ§¡Ã³Õà´ÕÂÇ áÊ´§ÇèÒ $k | \phi (n)$ #
__________________
keep your way.
|
#81
|
||||
|
||||
ÍéÒ§ÍÔ§:
|
#82
|
||||
|
||||
àËÅ×ͺä»àËç¹ FE¤èÒÂ2»Õ2555 ¹ÕèÁѹ imo ¢éÍ 6áµèà»ÅÕè¹àÅ¢´Õæ¹Õèàͧ
´ÙÍÕ¡·Õ ¢éÍ5.2´éÇ *0* 09 ÊÔ§ËÒ¤Á 2012 03:16 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ polsk133 |
#83
|
||||
|
||||
¨§ËÒÅӴѺà·ÍÃì¹ÒÃÕ ·ÕèÂÒÇ10ËÅÑ¡ «Ö§¼ÅºÇ¡¢Í§àŢⴴ·Õèãªéà»ç¹àÅ¢¤Ùè
__________________
I'm god of mathematics. 03 µØÅÒ¤Á 2012 21:17 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ »Ò¡¡Òà«Õ¹ |
#84
|
||||
|
||||
¢éÍÊͺàâÒÈÙ¹ÂìÊǹ¡ØËÅÒº»Õ·ÕèáÅéǼԴ¢éÍä˹ËÃͤÃѺ
__________________
I'm god of mathematics. |
#85
|
||||
|
||||
ÍéÒ§ÍÔ§:
__________________
I'm god of mathematics. |
#86
|
||||
|
||||
¹Ñºâ´ÂÍéÍÁ¡çä´é¤ÃѺ¶éÒäÁèªÍº¤ÇÒÁÊÑÁ¾Ñ¹¸ìàÇÕ¹à¡Ô´
¨ÐµéͧÁÕ '1' ÍÂÙèà»ç¹¨Ó¹Ç¹¤ÙèµÑÇ «Öè§ÁÕÍÂÙè·Ñé§ËÁ´ $$3^6 - (\binom{6}{1}2^5+\binom{6}{3}2^3+\binom{6}{5}2^1) = 365$$ ¨Ó¹Ç¹
__________________
The Lost Emic <<-- ˹ѧÊ×Íà©Å¢éÍÊͺÃдѺ»ÃжÁ¹Ò¹ÒªÒµÔ EMIC ¤ÃÑ駷Õè 1 - ¤ÃÑ駷Õè 8 ªØ´ÊØ´·éÒ ËŧÁÒ 07 µØÅÒ¤Á 2012 20:50 : ¢éͤÇÒÁ¹Õé¶Ù¡á¡éä¢áÅéÇ 1 ¤ÃÑé§, ¤ÃÑé§ÅèÒÊØ´â´Â¤Ø³ gon |
#87
|
||||
|
||||
ÍéÒ§ÍÔ§:
__________________
I'm god of mathematics. |
#88
|
||||
|
||||
¶éÒÁÕ '1' ÍÂÙè 1 µÑÇ ¢Ñé¹·Õè 1. àÅ×Í¡ÇèÒ¨Ð¹Ó '1' ä»ÇÒ§µÃ§µÓá˹è§ã´¢Í§¨Ó¹Ç¹ 6 ËÅÑ¡ ¨ÐÇÒ§ä´é $\binom{6}{1}$ ÇÔ¸Õ ¢Ñé¹·Õè 2. ËÅÑ¡·ÕèàËÅ×ÍÍÕ¡ 5 ËÅÑ¡ ã¹áµèÅÐËÅÑ¡ àÅ×Í¡ÇèÒ¨Ðãªé '0' ËÃ×Í '2' àÅ×Í¡ä´é 2 ÇÔ¸Õ ´Ñ§¹Ñé¹ 5 ËÅÑ¡·ÕèàËÅ×Í ÇÒ§ä´é $2^5$ ÇÔ¸Õ ÊÓËÃѺÍÕ¡ 2 ¡Ã³Õ·ÕèàËÅ×ͤ×Í ÁÕ '1' ÍÂÙè 3 µÑÇ ¡Ñº ÁÕ '1' ÍÂÙè 5 µÑÇ ¡ç¤Ô´·Ó¹Í§à´ÕÂǡѹ¤ÃѺ |
#89
|
||||
|
||||
ÍéÒ§ÍÔ§:
__________________
I'm god of mathematics. |
#90
|
||||
|
||||
¶éÒäÁèÍÂÒ¡á¡ ¡çµéͧÅͧÊѧࡵ¤ÃѺ ÇèÒ¨Ò¡¹Ô¾¨¹ì´Ñ§¡ÅèÒÇ ¨ÐÊÒÁÒöÂغËÃ×ÍÁͧãËéÊÑé¹¢Öé¹ä´éËÃ×ÍäÁè «Ö觨ҡµÑÇÍÂèÒ§·ÕèáÊ´§äÇé àÃÒ¨ÐàËç¹ÇèÒ â´Â·Äɮպ··ÇÔ¹ÒÁ ¨Ðä´é $$\binom{6}{1}2^5 + \binom{6}{3}2^3 + \binom{6}{5}2^1 = \frac{(2+1)^6 - (2-1)^n}{2}$$ ¹Ñ蹡ç¤×Í ÊÓËÃѺ n ËÅÑ¡ã´ æ áÅéǨÐä´éÇèÒ $$3^n - \frac{(2+1)^n - (2-1)^n}{2} = 3^n-\frac{3^n-1}{2} = \frac{3^n+1}{2}$$ à»ç¹Êٵ÷ÑèÇ仢ͧÅӴѺà·ÍÃì¹ÒÃÕ·ÕèÁÕ¤ÇÒÁÂÒÇ $n$ ËÅÑ¡ã´ æ ·ÕèÁռźǡ¢Í§·Ø¡¾¨¹ìà»ç¹¨Ó¹Ç¹¤Ùè¤ÃѺ.
|
à¤Ã×èͧÁ×ͧ͢ËÑÇ¢éÍ | ¤é¹ËÒã¹ËÑÇ¢é͹Õé |
|
|