|
สมัครสมาชิก | คู่มือการใช้ | รายชื่อสมาชิก | ปฏิทิน | ค้นหา | ข้อความวันนี้ | ทำเครื่องหมายอ่านทุกห้องแล้ว |
|
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
#1
|
||||
|
||||
ข้อสอบ สมาคม ม.ต้น 2557 (ฉบับเต็ม)
|
#2
|
|||
|
|||
1. ผมได้ $A=\frac{7}{2} l^2 \sin \frac{2\pi }{7} ,B=\frac{18}{2} l^2 \sin \frac{2\pi }{18}$ จะเปรียบเทียบ ข้อ (2) อย่างไรครับ 2. ทำไมต้องกำหนด $l>4$ ครับ ขอบคุณครับ |
#3
|
||||
|
||||
อ้างอิง:
เนื่องจาก $\sin \frac{2\pi}{7} < \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ และ $\sin \frac{\pi}{9}> \sin 15^{\circ} = \frac{\sqrt{3}-1}{2\sqrt{2}}$ $\frac{A}{B} = \frac{7}{18} \cdot \frac{\sin(2\pi/7)}{\sin(\pi/9)} < \frac{7}{18} \cdot \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}-1}{2\sqrt{2}}} = \frac{7\sqrt{2}}{6(3-\sqrt{3})}$ พิสูจน์ได้ไม่ยากว่า $\frac{7\sqrt{2}}{6(3-\sqrt{3})} < \frac{25}{11}$ เนื่องจาก $77\sqrt{2} \approx 77(1.4) = 107.8$ และ $150(3-\sqrt{3}) \approx 150(3-1.7) = 150(1.3) = 195$ แสดงว่า ข้อ 2. จริง ค่า $l$ ผมคิดไม่จำเป็นต้องมากกว่า 4 นะครับ อาจจะบอกมาเพื่อให้คำนวณง่ายตามวิธีของคนออกข้อสอบครับ. |
#4
|
||||
|
||||
น่าสนใจดีนะครับ การหาวิธี ม.ต้น จริงๆโจทย์คงตั้งใจจะให้สังเกตว่าเมื่อจำนวนเหลี่ยมเพิ่มขึ้นเรื่อยๆ พื้นที่จะมากขึ้น
ก็จะได้ $A<B<C$ ซึ่งได้คำตอบไม่ยากครับ อย่างไรก็ตาม การใช้ความรู้แค่ ม.ต้น ก็อาจจะยังไม่พอที่จะพิสูจน์ข้อสังเกตนี้ โจทย์จึงเปลี่ยนไปเป็นให้พิสูจน์ตัวนี้แทน $\dfrac{A}{25}<\dfrac{B}{11}$ ซึ่งจะสามารถพิสูจน์โดยวิธี ม.ต้นได้ครับ ก่อนอื่นสังเกต ว่าเราจะสามารถบรรจุรูป 7 เหลี่ยมด้านเท่ามุมเท่า ลงในรูป 21 เหลี่ยมด้านเท่ามุมเท่าได้ จะพบว่าพื้นที่ 21 เหลี่ยมเป็น $\dfrac{21}{2}l^2\sin\dfrac{2\pi}{21}$ ดังนั้นจะได้ $\dfrac{A}{21}<\dfrac{1}{2}l^2\sin\dfrac{2\pi}{21}$ และพื้นที่ 18 เหลี่ยมเป็น $\dfrac{18}{2}l^2\sin\dfrac{2\pi}{18}$ จะได้ $\dfrac{B}{18}=\dfrac{1}{2}l^2\sin\dfrac{2\pi}{18}$ แต่ $\sin\dfrac{2\pi}{18}>\sin\dfrac{2\pi}{21}$ จะได้ $\dfrac{A}{21}<\dfrac{B}{18}$ และจะได้ผลตามนี้ด้วย $\dfrac{A}{25}<\dfrac{A}{21}<\dfrac{B}{18}<\dfrac{B}{11}$ จึงสามารถพิสูจน์ที่โจทย์ถามได้ครับ (แต่ถ้าสอบอยู่ก็คงไม่มีใครมาพิสูจน์น่ะครับ)
__________________
----/---~Alice~ จงรับรู้ไว้ ชื่อแห่งสีสันหนึ่งเดียวที่แสดงผล ---/---- ~Blue~ นี่คือ สีแห่งความหลังอันกว้างใหญ่ของเว็บบอร์ดนี้ |
#5
|
|||
|
|||
ขอบคุณ คุณกร และคุณThgx0312555 มากครับ
ตอนแรกผมทำโดย $\sin\dfrac{2\pi}{7}>\sin\dfrac{2\pi}{18}$ $\dfrac{18}{2}l^2\sin\dfrac{2\pi}{7}>\dfrac{18}{2}l^2\sin\dfrac{2\pi}{18}$ $\dfrac{18}{7}\times \dfrac{7}{2}l^2\sin\dfrac{2\pi}{7}>\dfrac{18}{2}l^2\sin\dfrac{2\pi}{18}$ $\dfrac{18}{7}A>B$ $\dfrac{A}{7}>\dfrac{B}{18}$ เลยไม่รู้จะไปอย่างไรต่อ แต่เดาว่าข้อนี้น่าจะถูก ..................................................... เอาใหม่ $A<\dfrac{25}{2}l^2\sin\dfrac{2\pi}{25}$ $\dfrac{A}{25}<\dfrac{1}{2}l^2\sin\dfrac{2\pi}{25}$ $\dfrac{A}{25}<\dfrac{1}{2}l^2\sin\dfrac{2\pi}{25}<\dfrac{1}{2}l^2\sin\dfrac{2\pi}{18}=\dfrac{B}{18}$ $\dfrac{A}{25}<\dfrac{B}{18}<\dfrac{B}{11}$ ขอบคุณอีกครั้งครับ |
#6
|
|||
|
|||
รบกวนสมาชิกอยากขอเฉลยคำตอบไว้ใช้ตรวจสอบค่ะ ขอบคุณคะ
|
#7
|
||||
|
||||
ผมไปทำมาเเล้วครับ ยากอยู่เหมือนกัน ข้อเเรก ไม่เคลียร์ใช่มั้ยครับ
__________________
Mathematics is not about finding X but finding whY. |
#8
|
||||
|
||||
มีคนส่งเฉลยมาให้ดู --> น่าจะสรุปได้ดังนี่
ตอนที่ 1 $\begin{array}\ 1.-& &2. ค& &3. ข& &4. ง& &5. ก \\ 6. ง& &7. ข& &8. ก& &9. ง& &10. ง \\ 11. ค& &12. ข& &13. ก& &14. -& &15. ค \end{array} $ ตอนที่ 2 16. 30 นาที 17. 1/2 18. 6 19. $(5x-4)(7x^2+2x+52)$ 20. 159 คน ตอนที่ 3 21. $(2x-3+\sqrt{3}+\sqrt{5})(2x-3+\sqrt{3}-\sqrt{5})$ 22. $\frac{8\pm \sqrt{51}}{2}$ 23. a = -3, b = 15 24. 1.2 25. $\frac{1+k^2}{1-k^2}$ 26. $\frac{20}{3}$ หรือ $6\frac{2}{3}$ 27. a = -2 , b = 3 28. 441 รูป (แก้ไขคำตอบ) 29.1 $4:7$ 29.2 เท่ากัน ที่ $20^o$C 30. $65^o$ 31. 90 กอง 32. A 10 วัน, B 15 วัน, C 30วัน 33. 63 นาที 34. 33 กม. 35. 6.6 ซ.ม. 36. 2.5 หน่วย 37. $\frac{6}{25}$ 38. $\frac{5}{3}$ บาท 39. 45 องศา 40. 6.16 28 ธันวาคม 2014 15:12 : ข้อความนี้ถูกแก้ไขแล้ว 2 ครั้ง, ครั้งล่าสุดโดยคุณ Puriwatt เหตุผล: แก้คำตอบข้อ 28 ตามที่คุณ onion แจ้งมาครับ |
#9
|
|||
|
|||
ขอรบกวนสมาชิกช่วยชี้แนะแนวทางในข้อ 3 4 7 8 11 16 และ 17 ขอบคุณคะ
|
#10
|
||||
|
||||
อยากทราบข้อ 33และ ข้อ 38 ครับ
__________________
I love Badminton! |
#11
|
||||
|
||||
ข้อ 4(แนวคิดเเบบมั่วๆ ของผมครับ)
ผลต่างของจำนวน 2 จำนวนที่ไม่เท่ากันคือ 2 หรือ 4 หรือ 6 หรือ 8 หรือ 10 แสดงว่าต้องเป็นจำนวนคู่หรือจำนวนคี่เรียงกัน ถ้าผลคูณของจำนวนทั้ง 6 จำนวน หารด้วย 33 ลงตัว แสดงว่่าใน 6 จำนวนนี้ต้องมีจ้านวนที่หารด้วย 3 ลงตัวอย่างน้อย 1 ตัวและมีจำนวนที่หารด้วย 11 ลงตัวอย่าวน้อย 1 ตัว โดยขอสมมติว่าทั้ง 6 จำนวนเป็น 7 9 11 13 15 17 ซึ่งมี 2 จำนวนที่มีหลักเดียว จำนวนชุดนี้ตามเงื่อนไขที่โจทย์ให้แล้วจับคูณกันได้ 2297295 แนวคิดประมาณนี้ครับ ป.ล. ถ้าอยากได้เฉลยแบบเต็มรอผู้รู้ดีกว่าครับ |
#12
|
||||
|
||||
ข้อ 7
$a^2+3a+b^2$ $=a^2+2ab+b^2+ab$ $=(a+b)^2+ab$ $=2^2+ab=2$ (เพราะว่า $a+b=2$) ดังนั้น $ab=-2$ $a^3+b^3$ $=(a+b)(a^2-ab+b^2)$ $=(a+b)[(a+b)^2-3ab]$ $=2(2^2+6)$ $=2(10)$ $=20$ |
#13
|
||||
|
||||
ข้อ.38 ลองศึกษาเรื่องค่าคาดหมาย น่าจะม.3
จะได้ว่า = (60)×6/36 + (-10)×30/36 = 60/36 = 5/3 บาท |
#14
|
||||
|
||||
ข้อ.33 กำหนดให้
v = ความเร็วเครื่องบินเมื่อลมนิ่ง u = ความเร็วลม t = เวลาที่ใช้บินเมื่อลมนิ่ง(นาที) (v-u)84 = vt = (v+u)(t-9) = ระยะทางกท.-ชม. $\frac{(v-u)}{v} = \frac{t}{84}$ ----(1) $\frac{(v+u)}{v} = \frac{t}{(t-9)}$ ----(2) (1)+(2); $2 = \frac {t^2+75t}{84t-9(84)}$ จัดรูปได้เป็น $t^2-93t+(21)(72)=0$ จะได้ t = 21 หรือ 72 นาที แต่เวลาที่ใกล้เคียง 1 ชั่วโมงคือ 72 นาที ดังนั้นเวลาบินตามลมคือ t-9 = 63 นาที 07 ธันวาคม 2014 10:16 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ Puriwatt เหตุผล: ลืมใส่หมายเลขข้อ |
#15
|
||||
|
||||
ข้อ.17 การที่มีรากซ้ำ คือ เป็นรูปกำลังสองสมบูรณ์
หมายถึงรูปสมการปกติ $Ax^2+Bx+ C=0$ ที่มีค่า $B^2-4AC= 0$ และ $ x = -\frac{B}{2A} $ จากรูปสมการที่โจทย์ให้มาคือ $ax^2+ ax+1=0$ จะได้ว่า $a^2-4(a)(1) = 0; a = 4 $ และ $ k = -\frac{B}{2A} = -\frac {1}{2}$ ดังนั้น $a^k = 4^{-\frac{1}{2}} = \frac{1}{2} =0.5$ 16 ธันวาคม 2014 08:53 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ Puriwatt |
หัวข้อคล้ายคลึงกัน | ||||
หัวข้อ | ผู้ตั้งหัวข้อ | ห้อง | คำตอบ | ข้อความล่าสุด |
[สอวน.ขอนแก่น 2557] 24/08/2557 มาแชร์ข้อสอบและเฉลยกันค่ะ | <KAB555> | ข้อสอบโอลิมปิก | 14 | 17 มีนาคม 2015 19:31 |
ข้อสอบราชภัฎอุดร ปี 2557 | madomade | ปัญหาคณิตศาสตร์ ประถมปลาย | 15 | 03 มกราคม 2015 12:25 |
ข้อสอบเพชรยอดมงกุฎรอบแรก 2557 | Thgx0312555 | ข้อสอบในโรงเรียน ม.ปลาย | 4 | 23 สิงหาคม 2014 18:07 |
สพฐ. 2557 กำหนดการรับสมัคร(1-25 ธ.ค.2556)และสอบแข่ง รอบที่ 1 (26 ม.ค.2557) | gon | ข่าวคราวแวดวง ม.ต้น | 22 | 16 ธันวาคม 2013 09:56 |
สพฐ. 2557 กำหนดการรับสมัคร(1-25 ธ.ค.2556)และสอบแข่ง รอบที่ 1 (26 ม.ค.2557) | gon | ข่าวคราวแวดวงประถม ปลาย | 1 | 10 พฤศจิกายน 2013 04:56 |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|