#151
|
||||
|
||||
มันคือการบวกแบบมีการวนของตัวแปรครับ
เช่น $\sum_{cyc\ }ab=ab+bc+ca$ $\sum_{cyc\ }a^2b=a^2b+b^2c+c^2a$ $\sum_{cyc\ }(x^2+y^2)(y^2+z^2)=(x^2+y^2)(y^2+z^2)+(y^2+z^2)(z^2+x^2)+(z^2+x^2)(x^2+y^2)$
__________________
เหนือฟ้ายังมีฟ้าแต่เหนือข้าต้องไม่มีใคร ปีกขี้ผื้งของปลอมงั้นสินะ ...โลกนี้โหดร้ายจริงๆ มันให้ความสุขกับเรา แล้วสุดท้าย มันก็เอาคืนไป... |
#152
|
||||
|
||||
#151
$\sum_{cyc}^{}$ $ab=ab+bc+ca$ อยากถามว่าตัว c มาจากไหนอะครับ?
__________________
|
#153
|
||||
|
||||
หาอ่าน และโจทย์แบบง่ายๆ ได้ที่ ไหนหรอครับ
|
#154
|
||||
|
||||
อ้างอิง:
#152 แล้วแต่โจทย์จะกำหนดครับ ถ้ามี d ด้วยก็เป็น $ab+bc+cd+da$ #153 http://www.mathcenter.net/forum/showthread.php?t=2439 เลยครับ
__________________
เหนือฟ้ายังมีฟ้าแต่เหนือข้าต้องไม่มีใคร ปีกขี้ผื้งของปลอมงั้นสินะ ...โลกนี้โหดร้ายจริงๆ มันให้ความสุขกับเรา แล้วสุดท้าย มันก็เอาคืนไป... |
#155
|
||||
|
||||
ขอบคุณมากครับ
|
#156
|
||||
|
||||
อ้างอิง:
พิสูจน์ว่า $\frac{1}{3x^2+2x+1}+\frac{1}{3y^2+2y+1} \geq \frac{1}{x^2+y^2+1}$
__________________
เหนือฟ้ายังมีฟ้าแต่เหนือข้าต้องไม่มีใคร ปีกขี้ผื้งของปลอมงั้นสินะ ...โลกนี้โหดร้ายจริงๆ มันให้ความสุขกับเรา แล้วสุดท้าย มันก็เอาคืนไป... |
หัวข้อคล้ายคลึงกัน | ||||
หัวข้อ | ผู้ตั้งหัวข้อ | ห้อง | คำตอบ | ข้อความล่าสุด |
Algebra Marathon | nooonuii | พีชคณิต | 199 | 20 กุมภาพันธ์ 2015 10:08 |
Trigonometric Marathon | Mastermander | พีชคณิต | 251 | 24 พฤศจิกายน 2013 21:21 |
Calculus Marathon (2) | nongtum | Calculus and Analysis | 134 | 03 ตุลาคม 2013 16:32 |
Marathon | Mastermander | ฟรีสไตล์ | 6 | 02 มีนาคม 2011 23:19 |
Calculus Marathon | nooonuii | Calculus and Analysis | 222 | 26 เมษายน 2008 03:52 |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|