#1
|
||||
|
||||
SMO 2015
ขาดข้อสอง และข้อเจ็ด
20 สิงหาคม 2015 22:46 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ math ninja |
#2
|
||||
|
||||
ข้อ 4 ให้ n=1 ก็ได้เป็นเป็นอนันต์เลยไม่ใช่เหรอครับ หรือมีเงื่อนไขเพิ่ม
ปล.อ่านข้อ1ไม่ออกครับ
__________________
เหนือฟ้ายังมีอวกาศ |
#3
|
|||
|
|||
ข้อสอบวันที่ 1
$1.$ กำหนดลำดับ ${a_n}$ โดยที่ $a_1=1,\, a_{2n} = a_{2n-1} + a_n, \,a_{2n+1} = a_{2n} \,\,(n = 1,2,...)$ จงพิสูจน์ว่า $a_{2^n} < 2^{\frac{n^2}{4}}$ $2.$ - $3.$ เป็นไปได้หรือไม่ที่เราจะนำจำนวนเต็มตั้งแต่ $1$ ถึง $2015$ มาเรียงกันเป็นวงกลม (ต้องใช้ทั้ง $2015$ จำนวนและแต่ละจำนวนใช้ได้เพียงครั้งเดียว) โดยที่ผลบวกของสองจำนวนใดๆซึ่งอยู่ติดกันจะต้องเป็นพหุคูณของ $4$ หรือ $7$ จงแสดงการพิสูจน์ $4.$ กำหนดเซต $P_n=\left\{n^k | k = 0,1,2,…\,\right\}$ จงหาจำนวนสามสิ่งอันดับ $(a,b,c)$ ทั้งหมด ที่ทำให้ทั้ง $a-1, ab-12, abc-2015$ เป็นสมาชิกของเซต $P_n$ สำหรับจำนวนเต็มบวก $n$ โดยที่ $a,b,c \in \mathbb{N}$ $(a-1, ab-12, abc-2015$ อาจเกิดค่าซ้ำได้$)$ ข้อสอบวันที่ 2 $5.$ กำหนดฟังก์ชัน $f(x) = ax+b$ โดยที่ $a,b \in \mathbb{R} $ ถ้า $|f(x)| \leq 1$ สำหรับทุก $x \in [0,1]$ แล้วจงหาค่าของ $S = (a+1)(b+1)$ $6.$ กำหนด $\triangle ABC$ ให้ $a, b, c$ แทนความยาวด้าน $BC, CA, AB$ ตามลำดับ $P, Q$ เป็นจุดบนด้านสองด้านของ $\triangle ABC$ จงหาความยาว $PQ$ ที่น้อยที่สุด ซึ่งเมื่อลากส่วนของเส้นตรงเชื่อมจุด $P$ และ $Q$ แล้วจะแบ่งพื้นที่ $\triangle ABC$ ออกเป็นสองส่วนที่เท่ากัน โดยที่ $c < b < a < 2c$ $7.$ – $8.$ กำหนดเซต $A(m,n) =\left\{x^2+mx+n | x \in \mathbb{I}\,\right\}$ จะมีจำนวนเต็ม $a, b, c$ ที่แตกต่างกัน ซึ่งเป็นสมาชิกของเซต $A(m,n)$ และสอดคล้องสมการ $a =bc$ หรือไม่ ถ้า $m, n$ เป็นจำนวนเต็มใดๆ จงแสดงการพิสูจน์
__________________
-It's not too serious to calm - Fighto! 10 กุมภาพันธ์ 2016 22:36 : ข้อความนี้ถูกแก้ไขแล้ว 2 ครั้ง, ครั้งล่าสุดโดยคุณ computer |
หัวข้อคล้ายคลึงกัน | ||||
หัวข้อ | ผู้ตั้งหัวข้อ | ห้อง | คำตอบ | ข้อความล่าสุด |
ผลการแข่งขัน CIMC 2015 ที่ประเทศจีน ระหว่างวันที่ 27 กค - 1 สค ด้วยครับ | KIN | ข่าวคราวแวดวงประถม ปลาย | 1 | 04 สิงหาคม 2015 20:26 |
ตัวแทนประเทศ iwymic, aitmo, smo 2015 (สพฐ.) | gon | ข่าวคราวแวดวง ม.ต้น | 0 | 22 พฤษภาคม 2015 18:27 |
กิจกรรมตอบปัญหาชิงรางวัล USB flash drive IMO 2015 | FunMathWithIPST | ข้อสอบโอลิมปิก | 1 | 17 มีนาคม 2015 19:45 |
พรีเมียร์ลีก 2014-2015 | ฟินิกซ์เหินฟ้า | ฟรีสไตล์ | 3 | 15 สิงหาคม 2014 21:38 |
ไทยเป็นเจ้าภาพ IMO ปี 2015 ครับผม!! | ~ArT_Ty~ | ข่าวคราวแวดวง ม.ปลาย | 1 | 03 สิงหาคม 2011 19:30 |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|