Mathcenter Forum  

Go Back   Mathcenter Forum > คณิตศาสตร์โอลิมปิก และอุดมศึกษา > Calculus and Analysis
สมัครสมาชิก คู่มือการใช้ รายชื่อสมาชิก ปฏิทิน ค้นหา ข้อความวันนี้ ทำเครื่องหมายอ่านทุกห้องแล้ว

ตั้งหัวข้อใหม่ Reply
 
เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
  #1  
Old 06 พฤษภาคม 2011, 13:19
kompaui kompaui ไม่อยู่ในระบบ
สมาชิกใหม่
 
วันที่สมัครสมาชิก: 09 มีนาคม 2011
ข้อความ: 2
kompaui is on a distinguished road
Default อยากทราบวิธีการอินทิเกรตข้อนี้แบบสวยๆครับ

$\int_{\frac{5\pi}{4}}^{\frac{33\pi}{4}}\,\frac{1}{(2^{sin{x}}+1)(2^{cos{x}}+1)}dx $
ผมลองแทนที่ $y=\frac{19\pi }{4} -x$ ครับ แต่ไม่รู้มาถูกทางหรือป่าว
ตอบพร้อมอ้างอิงข้อความนี้
  #2  
Old 28 กรกฎาคม 2020, 18:37
Anton's Avatar
Anton Anton ไม่อยู่ในระบบ
เริ่มฝึกวรยุทธ์
 
วันที่สมัครสมาชิก: 27 กรกฎาคม 2020
ข้อความ: 20
Anton is on a distinguished road
Send a message via ICQ to Anton Send a message via AIM to Anton Send a message via MSN to Anton Send a message via Yahoo to Anton Send a message via Skype™ to Anton
Default

อ้างอิง:
Problem. Evaluate the definite integral
$$\int_{\frac{5\pi}{4}}^{\frac{33\pi}{4}}\,\frac{1}{\left(2^{\sin(x)}+1\right)\,\left(2^{\cos(x)}+1\right)}\,\mathrm{d}x\,.$$
Fix $a>0$. Let $f_a(x):=\dfrac{1}{\big(a^{\sin(x)}+1\big)\,\big(a^{\cos(x)}+1\big)}$ for all $x\in\mathbb{R}$. Observe that
$$f_a\left(x+\frac{\pi}{2}\right)=\dfrac{1}{\big(a^{\cos(x)}+1\big)\,\big(a^{-\sin(x)}+1\big)}=a^{\sin(x)}\,f_a(x)\,,$$
$$f_a\left(x+\pi\right)=\dfrac{1}{\big(a^{-\sin(x)}+1\big)\,\big(a^{-\cos(x)}+1\big)}=a^{\sin(x)}\,a^{\cos(x)}\,f_a(x)\,,$$
and
$$f_a\left(x+\dfrac{3\pi}{2}\right)=\dfrac{1}{\big(a^{-\cos(x)}+1\big)\,\big(a^{\sin(x)}+1\big)}=a^{\cos(x)}\,f_a(x)\,.$$
Thus,
$$f_a(x)+f_a\left(x+\frac{\pi}{2}\right)+f_a(x+\pi)+f_a\left(x+\dfrac{3\pi}{2}\right)=\left(1+a^{\sin(x)}+a^{\sin(x)}\,a^{\cos(x )}+a^{\cos(x)}\right)\,f_a(x)=1\,.$$
Therefore, for any $\theta\in\mathbb{R}$,
$$\int_{\theta}^{2\pi+\theta}\,f(x)\,\mathrm{d}x=\int_{\theta}^{\theta+\frac{\pi}{2}}\,\Biggl(f_a(x)+{f_a \left(x+\frac{\pi}{2} \right)}+f_a(x+\pi)+{f_a \left(x+\dfrac{3\pi}{2} \right)} \Biggr)\,\mathrm{d}x=\frac{\pi}{2}\,.$$
Furthermore, observe that
$$f_a(x)=f_a\left(\dfrac{\pi}{2}-x\right)\,.$$
Hence,
$$\int_{2n\pi-\frac{3\pi}{4}}^{2n\pi+\frac{\pi}{4}}\,f_a(x)\,\mathrm{d}x=\int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}}\,f_a(x)\,\mathrm{d}x=\frac{1}{2}\,\int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}}\,f_a(x)\,\mathrm{d}x=\frac{1}{2}\left(\frac{\pi}{2}\right)=\frac{\pi}{4}$$
for all integers $n$. Consequently, for all $a>0$,
$$\int_{\frac{5\pi}{4}}^{\frac{33\pi}{4}}\,f_a(x)\,\mathrm{d}x=\sum_{k=0}^{2}\,\int_{\frac{5\pi}{4}+2k\pi}^{\frac{5\pi}{4}+2(k+1 )\pi}\,f_a(x)\,\mathrm{d}x+\int_{8\pi-\frac{3\pi}{4}}^{8\pi+\frac{\pi}{4}}\,f_a(x)\,\mathrm{d}x=3\left(\frac{\pi}{2}\right)+\frac{\pi}{4}=\frac{7\pi}{4}\,.$$
__________________
Потом доказывай, что ты не верблюд.

28 กรกฎาคม 2020 21:23 : ข้อความนี้ถูกแก้ไขแล้ว 8 ครั้ง, ครั้งล่าสุดโดยคุณ Anton
ตอบพร้อมอ้างอิงข้อความนี้
ตั้งหัวข้อใหม่ Reply


เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
ค้นหาในหัวข้อนี้:

ค้นหาขั้นสูง

กฎการส่งข้อความ
คุณ ไม่สามารถ ตั้งหัวข้อใหม่ได้
คุณ ไม่สามารถ ตอบหัวข้อได้
คุณ ไม่สามารถ แนบไฟล์และเอกสารได้
คุณ ไม่สามารถ แก้ไขข้อความของคุณเองได้

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
ทางลัดสู่ห้อง


เวลาที่แสดงทั้งหมด เป็นเวลาที่ประเทศไทย (GMT +7) ขณะนี้เป็นเวลา 13:45


Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha