#1
|
|||
|
|||
จำนวนเต็ม
พิสูจน์ว่าเป็นจำนวนเต็มหรือไม่
$ \left( 2\root3\of{2} +1 - \root\of{12\root3\of{2} - 15}\right)^3 $ |
#2
|
||||
|
||||
อ้างอิง:
$$12\sqrt[3]{2}-15=12t-15=4t^4+4t-15\,.$$ We make an Ansatz that $$4t^4+4t-15=(2t^2+at+b)^2$$ for some rational numbers $a$ and $b$. Thus, the coefficient of $t^2$ in $(2t^2+at+b)^2$, after reduction by the relation $t^3=2$, should become $0$. That is, $$a^2+4b=0\,.$$ The constant term of $(2t^2+at+b)^2$, after reduction by the relation $t^3=2$, should become $-15$. Therefore, $$8a+b^2=-15\,.$$ From the relations above, we have $$(b^2+15)^2=(-8a)^2=8^2a^2=8^2(-4b)=-256b\,.$$ Thus, $$b^4+30b^2+256b+225=0\,.$$ This means $$(b+1)(b^3-b^2+31b+225)=0\,.$$ We try $b=-1$, which means $a=-\dfrac{b^2+15}{8}=-2$. Then, we check whether $12t-15=(2t^2+at+b)^2=(2t^2-2t+1)^2$. Now, $$(2t^2-2t-1)^2=4t^4+4t^2+1-8t^3-4t^2+4t=4(2t)+4t^2+1-8(2)-4t^2+4t=12t-15\,.$$ That is, $$\sqrt{12\sqrt[3]{2}-15}=\sqrt{12t-15}=\sqrt{(2t^2-2t-1)^2}=|2t^2-2t-1|=1+2t-2t^2=1+2\sqrt[3]{2}-2\sqrt[3]{4}\,.$$ Therefore, $$\left(2\sqrt[3]{2}+1-\sqrt{12\sqrt[3]{2}-15}\right)^3=\Big(1+2\sqrt[3]{2}-\big(1+2\sqrt[3]{2}-2\sqrt[3]{4}\big)\Big)^3=(2\sqrt[3]{4})^3=2^3\cdot 4=32$$ is an integer.
__________________
Потом доказывай, что ты не верблюд. 28 กรกฎาคม 2020 21:26 : ข้อความนี้ถูกแก้ไขแล้ว 3 ครั้ง, ครั้งล่าสุดโดยคุณ Anton |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|