Mathcenter Forum  

Go Back   Mathcenter Forum > คณิตศาสตร์โอลิมปิก และอุดมศึกษา > พีชคณิต
สมัครสมาชิก คู่มือการใช้ รายชื่อสมาชิก ปฏิทิน ค้นหา ข้อความวันนี้ ทำเครื่องหมายอ่านทุกห้องแล้ว

ตั้งหัวข้อใหม่ Reply
 
เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
  #1  
Old 24 มีนาคม 2013, 17:44
polsk133's Avatar
polsk133 polsk133 ไม่อยู่ในระบบ
กระบี่ไร้สภาพ
 
วันที่สมัครสมาชิก: 14 สิงหาคม 2011
ข้อความ: 1,873
polsk133 is on a distinguished road
Default มีรากตรรกยะอย่างมาก1ตัว

c เป็นจำนวนตรรกยะ จงพิสูจน์ว่า

$x^3-3cx^2-3xc+c=0$ มีรากตรรกยะได้อย่างมาก1ค่า

ช่วยทีครับ
__________________
เพจรวมโจทย์คอมบินาทอริกที่น่าสนใจ
https://www.facebook.com/combilegends

24 มีนาคม 2013 17:44 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ polsk133
ตอบพร้อมอ้างอิงข้อความนี้
  #2  
Old 27 กรกฎาคม 2020, 20:51
Anton's Avatar
Anton Anton ไม่อยู่ในระบบ
เริ่มฝึกวรยุทธ์
 
วันที่สมัครสมาชิก: 27 กรกฎาคม 2020
ข้อความ: 20
Anton is on a distinguished road
Send a message via ICQ to Anton Send a message via AIM to Anton Send a message via MSN to Anton Send a message via Yahoo to Anton Send a message via Skype™ to Anton
Default

อ้างอิง:
Problem. Let $c$ be a rational number. Prove that the cubic equation $$x^3-3cx^2-3cx+c=0$$ has at most one rational solution.
The case $c=0$ is a counterexample. All three roots of this cubic polynomial are rational numbers (i.e., they are all zero).
But let's ignore that, since the asker may not count multiplicities of roots. So, we assume $c\neq 0$.

The discriminant (with respect to $x$) of the cubic polynomial $x^3-3cx^2-3cx+c$ is $27c^2(7c^2+10c-1)$. If this polynomial has at least two rational roots, then all roots are ratioals. Thus, $27c^2(7c^2+10c-1)$ must be a perfect square of a rational numbers. Hence,
$$t:=\frac{27c^2(7c^2+10c-1)}{(3c)^2}=3(7c^2+10c-1)$$
is a perfect square of a rational number.

Let $v_p$ denote the $p$-adic valuation for each prime natural number $p$. Now, if $v_3(c)>0$, then $v_3(t)=1$ is odd. If $v_3(c)=0$, then $v_3(t)=1$ as well. On the other hand, if $v_3(c)<0$, then $v_3(t)=1+2v_3(c)$ is also an odd integer. Thus, $t$ cannot be a perfect square.
__________________
Потом доказывай, что ты не верблюд.

29 กรกฎาคม 2020 02:41 : ข้อความนี้ถูกแก้ไขแล้ว 2 ครั้ง, ครั้งล่าสุดโดยคุณ Anton
ตอบพร้อมอ้างอิงข้อความนี้
ตั้งหัวข้อใหม่ Reply


เครื่องมือของหัวข้อ ค้นหาในหัวข้อนี้
ค้นหาในหัวข้อนี้:

ค้นหาขั้นสูง

กฎการส่งข้อความ
คุณ ไม่สามารถ ตั้งหัวข้อใหม่ได้
คุณ ไม่สามารถ ตอบหัวข้อได้
คุณ ไม่สามารถ แนบไฟล์และเอกสารได้
คุณ ไม่สามารถ แก้ไขข้อความของคุณเองได้

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
ทางลัดสู่ห้อง


เวลาที่แสดงทั้งหมด เป็นเวลาที่ประเทศไทย (GMT +7) ขณะนี้เป็นเวลา 02:43


Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Modified by Jetsada Karnpracha