#1
|
|||
|
|||
Find initial value
Find the solution of the initial problem
จงหาผลเฉลยของค่าเริ่มต้น y"-2y'+y=3(e^x)+sin2x ,y(0)=1,y'(0)=1 Show all your work. ช่วยหน่อยครับ ขอบคุณล่วงหน้าครับ |
#2
|
||||
|
||||
คำแนะนำ
แก้สมการ $y"-2y'+y=0$ เพื่อหาคำตอบก่อน คำตอบของสมการนี้อยู่ในรูปใด ติดค่าคงตัวไว้ก่อน การหาคำตอบเฉพาะ เราจะใช้ trial solution ใด เพื่อแทนในสมการ แล้วหา undetermined coefficient จาก initial value ที่กำหนดให้ จะหาคำตอบของ $y"-2y'+y=3e^x+\sin 2x$ ได้อย่างไร
__________________
คนไทยร่วมใจอย่าใช้ภาษาวิบัติ ฝึกพิมพ์สัญลักษณ์สักนิด ชีวิต(คนตอบและคนถาม)จะง่ายขึ้นเยอะ (จริงๆนะ) Stay Hungry. Stay Foolish. |
#3
|
|||
|
|||
ช่วยอีกทีนะครับ
อาจารย์บอกให้ใช้
e^(\lambda.t) อ่ะครับ ช่วยอธิบายวิธีใช้หน่อยครับ |
#4
|
||||
|
||||
ช่วยอธิบายเพิ่มได้ไหมอะครับ เพราะที่เคยเจอมาจะใช้ diff eq ฟูเรียร์ทรานฟอร์มและลาปลาซ ในการหาคำตอบนะครับ
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ |
#5
|
|||
|
|||
อันไหนง่ายที่สุดอ่ะครับ
ผมก้อยังงงๆอยู่ไม่รู้ว่าเรียนอะไร ใช้กับอะไรด้วย |
#6
|
||||
|
||||
ทุกวิธีจะมีความสัมพันธ์กันทั้งหมดครับ ขึ้นอยู่กับว่าคุณถนัดวิธีไหนในกรณีที่โจทย์ไม่ได้กำหนด
ถ้าเป็นผมจะใช้ลาปลาซ แต่ตอนนี้ผมจำสูตรไม่ได้แล้วครับ เดี๋ยวจะหามาให้ละกันครับทั้งสามวิธี คิดว่าคงเป็นพรุ่งนี้ตอนดึกนะครับ เพราะผมอยู่ ตจว กลับ กทม พรุ่งนี้เย็น
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ |
#7
|
||||
|
||||
$$y''-2y'+y=3e^x + \sin2x,y(0)=1,y'(0)=1$$
ผมจะใช้วิธีของลาปลาซทรานฟอร์ม $$L\left\{\,y''-2y'+y - 3e^x - \sin2x\right\}=\left(\, s^2Y(s) - sy(0) - y'(0)\right) -2\left(\,sY(s) - y(0)\right)+Y(s)-\frac{3}{s-1}-\frac{2}{s^2+4} $$ $$L\left\{\,y''-2y'+y - 3e^x - \sin2x\right\}=\left(\, s^2Y(s) - s - 1\right) -2\left(\,sY(s) - 1\right)+Y(s)-\frac{3}{s-1}-\frac{2}{s^2+4} $$ $$L\left\{\,y''-2y'+y - 3e^x - \sin2x\right\}= Y(s)\left(\,s^2-2s+1\right) - s - 3 -\frac{3}{s-1}-\frac{2}{s^2+4}=0 $$ $$Y(s)\left(\,s^2-2s+1\right) = s + 3 +\frac{3}{s-1}+\frac{2}{s^2+4} $$ $$Y(s)s^2-2s+1 = \frac{s}{s^2-2s+1} + \frac{3}{s^2-2s+1} +\frac{3}{(s-1)(s^2-2s+1)}+\frac{2}{(s^2-2s+1)(s^2+4)} $$ $$L^{-1}\left\{\,Y(s)\right\} = y(t) = e^x + 4xe^x +\frac{3}{2}x^2e^x+2\left(\,Ae^x + Bxe^x + C\cos2x + \frac{D}{2}\sin2x\right) $$ เช็คดูอีกทีนะครับเพราะผมก็มั่วๆไป และส่วนค่า A,B,C,D คุณก็ไปหาได้จากพจน์นี้นะครับ $\frac{2}{(s^2-2s+1)(s^2+4)}$
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ |
#8
|
||||
|
||||
ถ้าเป็นฟูเรียร์ก็จะคล้ายกับลาปลาซคือดูว่าแต่ละพจน์สัมพันธ์กับคุณสมบัติข้อไหนก็เอามาใช้ได้เลย
ส่วน diff equ ผมลืมไปแล้วครับ แต่ผมขอแนะนำหนังสือของพระจอมเกล้า พระนครเหนือนะครับ เขียนดีมาก แต่ถ้าให้ดีอ่าน textbook ดีกว่าครับ
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ |
#9
|
|||
|
|||
ช่วยอีกทีนะครับ
คืออาจารย์ผมบอกให้ใช้
Linear Tranformationอ่ะครับ ที่ทำเป็น 1.Homo 2.Particular Solution 3.General Solution 4.Initial Condition ช่วยอีกทีนะครับ |
#10
|
||||
|
||||
คือผมลืมไปหมดแล้วนะครับ มันอยู่ใน math2 นะครับ
มันต้องหา yc และ yp นะครับ yc ก็หาจาก y′′−2y′+y = 0 ส่วน yp ต้องสมมุติสมการคาดเดาจาก 3e^x+sin2x ผมลืมไปแล้วครับ ถ้าอยากให้ช่วยจริงคุณต้องหารูปแบบของผลเฉลยและสมการคาดเดาในการหา yp มาให้ผมด้วย เพราะผมลืมหมดแล้วครับ
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ 18 พฤษภาคม 2009 03:08 : ข้อความนี้ถูกแก้ไขแล้ว 1 ครั้ง, ครั้งล่าสุดโดยคุณ nongtum เหตุผล: double post |
#11
|
||||
|
||||
SERIES เล่ม5 ครับ
|
#12
|
||||
|
||||
อ้างอิง:
1 หาผลเฉลยคำตอบทั่วไป $y_c (x)$ $$y"-2y'+y=0$$ $$m^2 - 2m + 1 = 0$$ $$(m-1)(m-1) = 0$$ $m_1,m_2,...m_n \in R, m_1=m_2=m_3=...=m_n $ $$y_c (x)= (c_1 x^{n-1} + c_2 x^{n-2} + ... + c_{n})e^{m_1 x}$$ $m_1=m_2=1$ $$\therefore y_c (x)= (c_1 x + c_2)e^{x}$$ 2 หาคำตอบเฉพาะของสมการ $y_p (x)$ ซึ่งจะมีสองวิธีในการคำตอบคือวิธีเทียบ สปส. และวิธีแปรพารามิเตอร์ แต่ในที่นี้จะใช้วิธีเทียบ สปส. เนื่องจาก $y"-2y'+y=q(x)$ ดังนั้น $q(x) = 3e^x+\sin2x$ $q_1 (x) = 3e^x \Rightarrow y_p (x)= Ae^x$ และ $q_2 (x) = \sin2x \Rightarrow y_p (x)= B\sin2x + C\cos2x$ $$y_p (x)= Ae^x + B\sin2x + C\cos2x$$ จะเห็นว่า $A$ จะมีรูปแบบเดียวกับ $c_2$ ดังนั้นจึงต้องคูณด้วย $x$ เข้าไปที่พจน์ของ $A$ จะได้ $$y_p (x)= Axe^x + B\sin2x + C\cos2x$$ แต่ $A$ จะมีรูปแบบเดียวกับ $c_1$ ดังนั้นจึงต้องคูณด้วย $x$ เข้าไปที่พจน์ของ $A$ อีกครั้งจะได้ $$y_p (x)= Ax^2e^x + B\sin2x + C\cos2x$$ $$y'_p (x)= A(x^2 e^x + 2xe^x) + 2B\cos2x - 2C\sin2x$$ $$y''_p (x)= A(x^2 e^x + 4xe^x + 2e^x) - 4B\sin2x - 4C\cos2x$$ แทนค่า $y_p (x), y'_p (x), y''_p (x)$ ลงใน $y'' - 2y' +y = 3e^x+\sin2x$ จะได้ $$(A(x^2 e^x + 4xe^x + 2e^x) - 4B\sin2x - 4C\cos2x) -2(A(x^2 e^x + 2xe^x) + 2B\cos2x - 2C\sin2x) + (Ax^2e^x + B\sin2x + C\cos2x) = 3e^x+\sin2x$$ $$2Ae^x - (3B+2C)\sin2x +(2B-3C)\cos2x = 3e^x+\sin2x$$ $A = \frac{3}{2},B = \frac{3}{13},C = \frac{2}{13}$ $$\therefore y_p (x) = \frac{3}{2}x^2e^x + \frac{3}{13}\sin2x + \frac{2}{13}\cos2x$$ จาก $y(x) = y_c (x) + y_p (x)$ ดังนั้น $$\therefore y(x) = (c_1 x + c_2)e^{x} + \frac{3}{2}x^2e^x + \frac{3}{13}\sin2x + \frac{2}{13}\cos2x$$ ที่เหลือก็แทนเงื่อนไขเพื่อหา $c_1,c_2$ ช่วยตรวจอีกที ถ้าผิดตรงไหนช่วยบอกด้วยนะครับ
__________________
"ไม่มีอะไรดีไปกว่าการที่ได้ตื่นขึ้นมาอีกวัน" ผมเชื่อในปาฏิหารย์แต่ผมไม่เชื่อว่าปาฏิหารย์จะเกิดขึ้นถ้าผมไม่ทำ |
#13
|
|||
|
|||
ง่ายมากเลยข้อนี้อ่ะ แค่ใช้วิธีเทียบสัมประสิทธิ์ แล้วแยกสองสมการเท่านั้นเอง
|
หัวข้อคล้ายคลึงกัน | ||||
หัวข้อ | ผู้ตั้งหัวข้อ | ห้อง | คำตอบ | ข้อความล่าสุด |
How to find all roots of this equation ? | คนบ้า | คณิตศาสตร์อุดมศึกษา | 1 | 03 ตุลาคม 2008 23:50 |
Find some solution??? | นายสบาย | พีชคณิต | 9 | 21 พฤษภาคม 2008 00:48 |
Find x,y | <jamess> | ปัญหาคณิตศาสตร์ทั่วไป | 3 | 30 มีนาคม 2001 17:36 |
find all positive integer m | <parn> | ทฤษฎีจำนวน | 1 | 30 มีนาคม 2001 17:04 |
เครื่องมือของหัวข้อ | ค้นหาในหัวข้อนี้ |
|
|